SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Szczygiel R.) "

Search: WFRF:(Szczygiel R.)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
2.
  • Aad, G., et al. (author)
  • 2011
  • swepub:Mat__t
  •  
3.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
4.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
5.
  • 2011
  • swepub:Mat__t
  •  
6.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
7.
  • Abate, E., et al. (author)
  • Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS (A Toroidal LHC ApparatuS) Inner Detector provides charged particle tracking in the centre of the ATLAS experiment at the Large Hadron Collider (LHC). The Inner Detector consists of three subdetectors: the Pixel Detector, the Semiconductor Tracker (SCT), and the Transition Radiation Tracker (TRT). This paper summarizes the tests that were carried out at the final stage of SCT+TRT integration prior to their installation in ATLAS. The combined operation and performance of the SCT and TRT barrel and endcap detectors was investigated through a series of noise tests, and by recording the tracks of cosmic rays. This was a crucial test of hardware and software of the combined tracker detector systems. The results of noise and cross-talk tests on the SCT and TRT in their final assembled configuration, using final readout and supply hardware and software, are reported. The reconstruction and analysis of the recorded cosmic tracks allowed testing of the offline analysis chain and verification of basic tracker performance parameters, such as efficiency and spatial resolution, in combined operation before installation.
  •  
8.
  •  
9.
  • Abdesselam, A., et al. (author)
  • Engineering for the ATLAS SemiConductor Tracker (SCT) end-cap
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-scale tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008.
  •  
10.
  • Abdesselam, A., et al. (author)
  • The ATLAS semiconductor tracker end-cap module
  • 2007
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 575:3, s. 353-389
  • Journal article (peer-reviewed)abstract
    • The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker. (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 mu s buffer. The highest anticipated dose after 10 years operation is 1.4x10(14) cm(-2) in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area similar to 70 cm(2), each having 2 x 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X-0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e(-) equivalent noise charge (ENC) rising to only 1800e(-) ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 mu m (r phi) resolution perpendicular to the strip directions or 580 mu m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.
  •  
11.
  • Abdesselam, A., et al. (author)
  • The barrel modules of the ATLAS semiconductor tracker
  • 2006
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 568:2, s. 642-671
  • Journal article (peer-reviewed)abstract
    • This paper describes the silicon microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The module requirements, components and assembly techniques are given, as well as first results of the module performance on the fully assembled barrels that make up the detector being installed in the ATLAS experiment.
  •  
12.
  • Abat, E., et al. (author)
  • Combined performance studies for electrons at the 2004 ATLAS combined test-beam
  • 2010
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 5, s. P11006-
  • Journal article (peer-reviewed)abstract
    • In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.
  •  
13.
  • Abat, E., et al. (author)
  • A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
  • 2011
  • In: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221. ; 6
  • Journal article (peer-reviewed)abstract
    • A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.
  •  
14.
  • Abat, E., et al. (author)
  • Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam
  • 2011
  • In: Journal of Instrumentation. - 1748-0221. ; 6
  • Journal article (peer-reviewed)abstract
    • The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.
  •  
15.
  • Abata, E., et al. (author)
  • Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV
  • 2010
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576 .- 0167-5087. ; 621:1-3, s. 134-150
  • Journal article (peer-reviewed)abstract
    • A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit. (C) 2010 Published by Elsevier B.V.
  •  
16.
  • Abat, E., et al. (author)
  • Study of the response of the ATLAS central calorimeter to pions of energies from 3 to 9 GeV
  • 2009
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002 .- 1872-9576. ; 607:2, s. 372-386
  • Journal article (peer-reviewed)abstract
    • A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. in this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4. (C) 2009 Elsevier B.V. All rights reserved.
  •  
17.
  • Abat, E., et al. (author)
  • The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:2
  • Journal article (peer-reviewed)abstract
    • A straw proportional counter is the basic element of the ATLAS Transition Radiation Tracker (TRT). Its detailed properties as well as the main properties of a few TRT operating gas mixtures are described. Particular attention is paid to straw tube performance in high radiation conditions and to its operational stability.
  •  
18.
  • Abat, E., et al. (author)
  • The ATLAS TRT barrel detector
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS TRT barrel is a tracking drift chamber using 52,544 individual tubular drift tubes. It is one part of the ATLAS Inner Detector, which consists of three sub-systems: the pixel detector spanning the radius range 4 to 20 cm, the semiconductor tracker (SCT) from 30 to 52 cm, and the transition radiation tracker ( TRT) from 56 to 108 cm. The TRT barrel covers the central pseudo-rapidity region |eta| < 1, while the TRT endcaps cover the forward and backward eta regions. These TRT systems provide a combination of continuous tracking with many measurements in individual drift tubes ( or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. This paper describes the recently-completed construction of the TRT Barrel detector, including the quality control procedures used in the fabrication of the detector.
  •  
19.
  • Abat, E., et al. (author)
  • The ATLAS TRT electronics
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:6
  • Journal article (peer-reviewed)abstract
    • The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This paper describes the on and off detector electronics for the TRT as well as the TRT portion of the data acquisition (DAQ) system.
  •  
20.
  • Abat, E., et al. (author)
  • The ATLAS TRT end-cap detectors
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS TRT end-cap is a tracking drift chamber using 245,760 individual tubular drift tubes. It is a part of the TRT tracker which consist of the barrel and two end-caps. The TRT end-caps cover the forward and backward pseudo-rapidity region 1.0 < vertical bar eta vertical bar < 2.0, while the TRT barrel central eta region vertical bar eta vertical bar < 1.0. The TRT system provides a combination of continuous tracking with many measurements in individual drift tubes ( or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. Along with other two sub-systems, namely the Pixel detector and Semi Conductor Tracker (SCT), the TRT constitutes the ATLAS Inner Detector. This paper describes the recently completed and installed TRT end-cap detectors, their design, assembly, integration and the acceptance tests applied during the construction.
  •  
21.
  •  
22.
  • Shappee, B. J., et al. (author)
  • THE YOUNG AND BRIGHT TYPE IA SUPERNOVA ASASSN-141p : DISCOVERY, EARLY-TIME OBSERVATIONS, FIRST-LIGHT TIME, DISTANCE TO NGC 4666, AND PROGENITOR CONSTRAINTS
  • 2016
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 826:2
  • Journal article (peer-reviewed)abstract
    • On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or Assassin) discovered ASASSN-141p just similar to 2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-141p went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-141p for more than 100 days. We find that ASASSN-141p had a broad light curve (Delta m(15) (B) = 0.80 +/- 0.05), a B-band maximum at 2457015.82 +/- 0.03, a rise time of 16.941(-0.10)(+0.11) days, and moderate host-galaxy extinction (E (B - V)host = 0.33 +/- 0.06). Using ASASSN-141p, we derive a distance modulus for NGC 4666 of mu = 30.8 +/- 0.2, corresponding to a distance of 14.7 +/- 1.5 Mpc. However, adding ASASSN-141p to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 RG(circle dot).
  •  
23.
  • Åkesson, Torsten, et al. (author)
  • Status of design and construction of the Transition Radiation Tracker (TRT) for the ATLAS experiment at the LHC
  • 2004
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 522:1-2, s. 131-145
  • Journal article (peer-reviewed)abstract
    • The ATLAS Inner Detector consists of three sub-systems, the Pixel Detector at the innermost radius, the Semi-Conductor Tracker at intermediate radii, and the Transition Radiation Tracker (TRT) at the outermost radius in front of the electromagnetic calorimeter. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift-tubes (or straws) and of electron identification based on radiator fibres or foils interleaved between the straws themselves. This paper describes the current status of design and construction of the various components of the TRT: the assembly of the barrel modules has recently been completed, that of the end-cap wheels is well underway, and the on-detector front-end electronics is in production. The detector modules and front-end electronics boards will be integrated together over the next year, the barrel and end-cap TRT parts will be assembled and tested with their SCT counterparts during 2005 and installation and commissioning in the ATLAS pit will take place at the end of 2005 and the beginning of 2006. (C) 2004 Elsevier B.V. All rights reserved.
  •  
24.
  • Åkesson, Torsten, et al. (author)
  • Implementation of the DTMROC-S ASIC for the ATLAS TRT Detector in a 0.25μm CMOS technology
  • 2003
  • In: IEEE Nuclear Science Symposium and Medical Imaging Conference. - 1082-3654. - 0780376366 ; 1, s. 549-553
  • Conference paper (peer-reviewed)abstract
    • The DTMROC-S is a 16-channeI front-end chip developed for the signal processing of the ATLAS straw tube detector, TRT. Due to a highly radioactive environment, the chip is fabricated in a commercial 0.25μm CMOS technology hardened by layout techniques and, in addition, a special methodology was used to improve the circuit's robustness against Single Events Effects (SEE) caused by ionizing particles. Exhaustive internal test features were foreseen to simplify and ensure comprehensive design verification, high fault coverage and throughput. Compared to the previous version of the chip done in a 0.8μm radiation-hard CMOS and despite of all supplementary features, the Deep-Sub-Micron (DSM) technology results in a much smaller chip size that increases the production yield and lowers the power consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view