SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tejedor Maria Badal) "

Search: WFRF:(Tejedor Maria Badal)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Badal Tejedor, Maria, 1986-, et al. (author)
  • AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting
  • 2017
  • In: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 33:46, s. 13180-13188
  • Journal article (peer-reviewed)abstract
    • Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture - due to the fast condensation kinetics - leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive effect under the same ambient conditions. The markedly different behavior detected by force measurements clearly shows the sticky and nonsticky propensity of the materials and allows a mechanistic description.
  •  
4.
  •  
5.
  • Badal Tejedor, Maria, et al. (author)
  • Freeze-dried cake structural and physical heterogeneity in relation to freeze-drying cycle parameters
  • 2020
  • In: International Journal of Pharmaceutics. - : Elsevier B.V.. - 0378-5173 .- 1873-3476. ; 590
  • Journal article (peer-reviewed)abstract
    • Freeze-drying is the preferred method to manufacture proteins in their solid state thus the understanding of the relationship between cycle parameters and cake properties remains of great interest. The present study aims to investigate the influence of the freezing conditions in the material properties at different layers throughout the dried structure, in the presence and absence of a protein. Placebo and protein formulations were dried applying different cooling rates: slow, fast and fast cooling with annealing. Non-uniform visual cake appearance, different pore sizes and endothermic events for release of structural water were observed throughout the cake at different freezing rates indicating heterogeneous properties of the dried material likely due to heating gradients during freezing. However, annealing increased the crystallinity and eliminated material inhomogeneities across the cake. The crystalline phase was mainly comprised of δ and hemihydrate mannitol (MHH) distributed at different ratios and influenced by the presence of the protein. The undesired formation of MHH is associated to currently used freezing temperatures or amorphous to crystalline material ratios. Thus, the correlation between the freezing step parameters and resulting material structure is a step forward to provide a better understanding of the freeze-dried cake formation and product quality improvement. 
  •  
6.
  • Badal Tejedor, Maria, 1986- (author)
  • Interfacial and material aspects of powders with relevance to pharmaceutical tableting performance
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Tablets are the most common forms of drug administration. They are convenient to administer and easy to manufacture. However, problems associated with the adhesion of the powders to the tableting tools are common. This phenomenon is known as sticking and even though it has been well documented and studied, it remains poorly understood. The many factors that contribute to good performance of the powders make the sticking problem difficult to solve.The goal of this study is to establish a relationship between the properties measured at the nanoscale to the overall tablet mechanical properties, tablet performance and powder pre-processing induced modifications. By using atomic force microscopy (AFM) we aim to develop an analytical method to characterize the mechanical and adhesive properties of the pharmaceutical powders at the nanoscale. Other methodologies such as scanning electron microscopy (SEM), thermal analyses (DSC, TGA) and tablet strength test were also used. The materials used in this study are commonly used excipients, a sticky drug and magnesium stearate (MgSt). Two different approaches offered by AFM were employed: sharp tip imaging and colloidal probe force measurements. Nano-mechanical properties of the materials were evaluated with a sharp tip cantilever showing that higher adhesion correlates with higher tablet cohesion and that both are significantly affected by the presence of MgSt. AFM characterization of the particle surface mechanical properties at the nanoscale was also used to detect the crystallinity and amorphicity levels of the materials. New approaches to presenting such data considering the particle heterogeneity and to track the dynamics of surface recrystallization are revealed. Adhesive interactions between a steel sphere and sticky and non-sticky powders were performed with the colloidal probe technique. Sticky materials presented a higher adhesion against the steel surface, and reveal the mechanism of stickiness.This work thus contributes to the provision of predictability of the performance of formulations at an early stage of the development process.
  •  
7.
  • Badal Tejedor, Maria, 1986-, et al. (author)
  • Milling induced amorphisation and recrystallization of α-lactose monohydrate
  • 2018
  • In: International Journal of Pharmaceutics. - : Elsevier BV. - 0378-5173 .- 1873-3476. ; 537:1-2, s. 140-147
  • Journal article (peer-reviewed)abstract
    • Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition.
  •  
8.
  • Badal Tejedor, Maria, et al. (author)
  • Tablet mechanics depend on nano and micro scale adhesion, lubrication and structure
  • 2015
  • In: International Journal of Pharmaceutics. - : Elsevier. - 0378-5173 .- 1873-3476. ; 486:1-2, s. 315-323
  • Journal article (peer-reviewed)abstract
    • Tablets are the most convenient form for drug administration. However, despite the ease of manufacturing problems such as powder adhesion occur during the production process. This study presents surface and structural characterization of tablets formulated with commonly used excipients (microcrystalline cellulose (MCC), lactose, mannitol, magnesium (Mg) stearate) pressed under different compaction conditions. Tablet surface analyses were performed with scanning electron microscopy (SEM), profilometry and atomic force microscopy (AFM). The mechanical properties of the tablets were evaluated with a tablet hardness test. Local adhesion detected by AFM decreased when Mg stearate was present in the formulation. Moreover, the tablet strength of plastically deformable excipients such as MCC was significantly decreased after addition of Mg stearate. Combined these facts indicate that Mg stearate affects the particle-particle bonding and thus elastic recovery. The MCC excipient also displayed the highest hardness which is characteristic for a highly cohesive material. This is discussed in the view of the relatively high adhesion found between MCC and a hydrophilic probe at the nanoscale using AFM. In contrast, the tablet strength of brittle materials like lactose and mannitol is unaffected by Mg stearate. Thus fracture occurs within the excipient particles and not at particle boundaries, creating new surfaces not previously exposed to Mg stearate. Such uncoated surfaces may well promote adhesive interactions with tools during manufacture.
  •  
9.
  •  
10.
  • Tejedor, Maria Badal, et al. (author)
  • Determination of Interfacial Amorphicity in Functional Powders
  • 2017
  • In: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 33:4, s. 920-926
  • Journal article (peer-reviewed)abstract
    • The nature of the surfaces of particles of pharmaceutical ingredients, food powders, and polymers is a determining factor for their performance in for example tableting, powder handling, or mixing. Changes on the surface structure of the material will impact the flow properties, dissolution rate, and tabletability of the 2 powder blend. For crystalline materials, surface amorphization is a phenomenon which is known to impact performance. Since it is important to measure and control the level of amorphicity, several characterization techniques are available to determine the bulk amorphous content of a processed material. The possibility of characterizing the degree of amorphicity at the surface, for example by studying the mechanical properties of the particles' surface at the nanoscale, is currently only offered by atomic force microscopy (AFM). The AFM PeakForce QNM technique has been used to measure the variation in energy dissipation (eV) at the surface of the particles which sheds light on the mechanical changes occurring as a result of amorphization or recrystallization events. Two novel approaches for the characterization of amorphicity are presented here. First, since particles are heterogeneous, we present a methodology to present the results of extensive QNM analysis of multiple particles in a coherent and easily interpreted manner, by studying cumulative distributions of dissipation data with respect to a threshold value which can be used to distinguish the crystalline and amorphous states. To exemplify the approach, which is generally applicable to any material, reference materials of purely crystalline alpha-lactose monohydrate and completely amorphous spray dried lactose particles were compared to a partially amorphized alpha-lactose monohydrate sample. Dissipation data are compared to evaluations of the lactose samples with conventional AFM and SEM showing significant topographical differences. Finally, the recrystallization of the surface amorphous regions in response to humidity was followed by studying the dissipation response of a well-defined surface region over time, which confirms both that dissipation measurement is a useful measure of surface amorphicity and that significant recrystallization occurs at the surface in response to humidity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view