SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thebault S) "

Search: WFRF:(Thebault S)

  • Result 1-25 of 37
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Claudi, R., et al. (author)
  • SPHERE dynamical and spectroscopic characterization of HD142527B
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • Aims. HD142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been included in the guaranteed time observation (GTO) SpHere INfrared survey for Exoplanets (SHINE) as part of the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT) in order to search for low-mass companions that might explain the presence of the gap. SHINE is a large survey within about 600 young nearby stars are observed with SPHERE with the aim to constrain the occurrence and orbital properties of the giant planet population at large (>5 au) orbital separation around young stars. Methods. We used the IRDIFS observing mode of SPHERE (IRDIS short for infrared dual imaging and spectrograph plus IFS or integral field spectrograph) without any coronagraph in order to search for and characterize companions as close as 30 mas of the star. Furthermore, we present the first observations that ever used the sparse aperture mask (SAM) for SPHERE both in IRDIFS and IRDIFS_EXT modes. All the data were reduced using the dedicated SPHERE pipeline and dedicated algorithms that make use of the principal component analysis (PCA) and reference differential imaging (RDI) techniques. Results. We detect the accreting low-mass companion HD142527B at a separation of 73 mas (11.4 au) from the star. No other companions with mass greater than 10 M-J are visible in the field of view of IFS (similar to 100 au centered on the star) or in the IRDIS field of view (similar to 400 au centered on the star). Measurements from IFS, SAM IFS, and IRDIS suggest an M6 spectral type for HD142527B, with an uncertainty of one spectral subtype, compatible with an object of M = 0.11 +/- 0.06 M-circle dot and R = 0.15 +/- 0.07 R-circle dot. The determination of the mass remains a challenge using contemporary evolutionary models, as they do not account for the energy input due to accretion from infalling material. We consider that the spectral type of the secondary may also be earlier than the type we derived from IFS spectra. From dynamical considerations, we further constrain the mass to 0.26(-0.14)(+0.16) , which is consistent with both our spectroscopic analysis and the values reported in the literature. Following previous methods, the lower and upper dynamical mass values correspond to a spectral type between M2.5 and M5.5 for the companion. By fitting the astrometric points, we find the following orbital parameters: a period of P = 35 137 yr; an inclination of i = 121 130 degrees, a value of Omega = 124 135 degrees for the longitude of node, and an 68% confidence interval of similar to 18-57 au for the separation at periapsis. Eccentricity and time at periapsis passage exhibit two groups of values: similar to 0.2-0.45 and similar to 0.45-0.7 for e, and similar to 2015-2020 and similar to 2020-2022 for T-0. While these orbital parameters might at first suggest that HD142527B is not the companion responsible for the outer disk truncation, a previous hydrodynamical analysis of this system showed that they are compatible with a companion that is able to produce the large cavity and other observed features.
  •  
3.
  • Lagrange, A. M., et al. (author)
  • Unveiling the beta Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • Context. The nearby and young beta Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at similar or equal to 9 au, as well as an inner planet orbiting at similar or equal to 2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution.Aims. We aim to further constrain the orbital and physical properties of beta Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system.Methods. We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry.Results. The orbital properties of both planets are constrained with a semi-major axis of 9.8 0.4 au and 2.7 +/- 0.02 au for b and c, respectively, and eccentricities of 0.09 +/- 0.1 and 0.27 +/- 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of beta Pictoris c might still be over-estimated. If no prior is provided on the mass of beta Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of beta Pictoris b, we find a solution in the 10-11 M-Jup range. Conversely, beta Pictoris c's mass is well constrained, at 7.8 +/- 0.4 M-Jup, assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the beta Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2 sigma level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M-Jup closer than 3 au, and more massive than 3.5 M-Jup between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M-Jup.Conclusions. Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of beta Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of beta Pictoris b.
  •  
4.
  • Meier, S, et al. (author)
  • Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis
  • 2023
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 80:3, s. 287-297
  • Journal article (peer-reviewed)abstract
    • There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS).ObjectiveTo determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression.Design, Setting, and ParticipantsData were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell–depleting treatment (ie, ocrelizumab or rituximab).ExposuresPatients received standard immunotherapies or were untreated.Main Outcomes and MeasuresIn cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally.ResultsThis study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P < .001), were inversely correlated with BMI (−1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P < .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [−0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P < .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P < .001).Conclusions and RelevanceResults of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development.
  •  
5.
  • Wilson, D., et al. (author)
  • Development and multi-center validation of a fully automated digital immunoassay for neurofilament light chain: toward a clinical blood test for neuronal injury
  • 2024
  • In: Clinical Chemistry and Laboratory Medicine. - 1434-6621 .- 1437-4331. ; 62:2, s. 322-331
  • Journal article (peer-reviewed)abstract
    • Objectives Neurofilament light chain (NfL) has emerged as a promising biomarker for detecting and monitoring axonal injury. Until recently, NfL could only be reliably measured in cerebrospinal fluid, but digital single molecule array (Simoa) technology has enabled its precise measurement in blood samples where it is typically 50-100 times less abundant. We report development and multi-center validation of a novel fully automated digital immunoassay for NfL in serum for informing axonal injury status.Methods A 45-min immunoassay for serum NfL was developed for use on an automated digital analyzer based on Simoa technology. The analytical performance (sensitivity, precision, reproducibility, linearity, sample type) was characterized and then cross validated across 17 laboratories in 10 countries. Analytical performance for clinical NfL measurement was examined in individual patients with relapsing remitting multiple sclerosis (RRMS) after 3 months of disease modifying treatment (DMT) with fingolimod.Results The assay exhibited a lower limit of detection (LLoD) of 0.05 ng/L, a lower limit of quantification (LLoQ) of 0.8 ng/L, and between-laboratory imprecision <10 % across 17 validation sites. All tested samples had measurable NfL concentrations well above the LLoQ. In matched pre-post treatment samples, decreases in NfL were observed in 26/29 RRMS patients three months after DMT start, with significant decreases detected in a majority of patients.Conclusions The sensitivity characteristics and reproducible performance across laboratories combined with full automation make this assay suitable for clinical use for NfL assessment, monitoring in individual patients, and cross-comparisons of results across multiple sites.
  •  
6.
  • Boccaletti, A., et al. (author)
  • Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale : Confirmation and new discoveries
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Journal article (peer-reviewed)abstract
    • Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s(-1) ); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 '' and 0.55 '' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
  •  
7.
  • D'Orazi, V., et al. (author)
  • Mapping of shadows cast on a protoplanetary disk by a close binary system
  • 2019
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 3:2, s. 167-172
  • Journal article (peer-reviewed)abstract
    • For a comprehensive understanding of planetary formation and evolution, we need to investigate the environment in which planets form: circumstellar disks. Here we present high-contrast imaging observations of V4046 Sagittarii, a 20-Myr-old close binary known to host a circumbinary disk. We have discovered the presence of rotating shadows in the disk, caused by mutual occultations of the central binary. Shadow-like features are often observed in disks(1,2), but those found thus far have not been due to eclipsing phenomena. We have used the phase difference due to light travel time to measure the flaring of the disk and the geometrical distance of the system. We calculate a distance that is in very good agreement with the value obtained from the Gaia mission's Data Release 2 (DR2), and flaring angles of alpha = (6.2 +/- 0.6)degrees and alpha = (8.5 +/- 1.0)degrees for the inner and outer disk rings, respectively. Our technique opens up a path to explore other binary systems, providing an independent estimate of distance and the flaring angle, a crucial parameter for disk modelling.
  •  
8.
  •  
9.
  • Eiroa, C., et al. (author)
  • Cold DUst around NEarby Stars (DUNES). First results A resolved exo-Kuiper belt around the solar-like star zeta(2) Ret
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L131-
  • Journal article (peer-reviewed)abstract
    • We present the first far-IR observations of the solar-type stars delta Pav, HR 8501, 51 Peg and zeta(2) Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 mu m fluxes from delta Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L-dust/L-star similar to 5 x 10(-7) (1 sigma level) around those stars. A flattened, disk-like structure with a semi-major axis of similar to 100 AU in size is detected around zeta(2) Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L-dust/L-star approximate to 10(-5).
  •  
10.
  • Eiroa, C., et al. (author)
  • DUst around NEarby Stars. The survey observational results
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 555, s. A11-
  • Journal article (peer-reviewed)abstract
    • Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.
  •  
11.
  • Engler, N., et al. (author)
  • The high-albedo, low polarization disk around HD 114082 that harbors a Jupiter-sized transiting planet Constraints from VLT/SPHERE completed with TESS, Gaia, and radial velocities
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Journal article (peer-reviewed)abstract
    • Aims. We present new optical and near-infrared images of the debris disk around the F-type star HD 114082 in the Scorpius-Centaurus OB association. We obtained direct imaging observations and analyzed the TESS photometric time series data of this target with the goal of searching for planetary companions to HD 114082 and characterizing the morphology of the debris disk and the scattering properties of dust particles. Methods. HD 114082 was observed with the VLT/SPHERE instrument in different modes - the IRDIS camera in the K band (2.0-2.3 mu m) together with the IFS in the Y, J, and H bands (0.95-1.66 mu m) using the angular differential imaging technique as well as IRDIS in the H band (1.5-1.8 mu m) and ZIMPOL in the I_PRIME band (0.71-0.87 mu m) using the polarimetric differential imaging technique. To constrain the basic geometrical parameters of the disk and the scattering properties of dust grains, scattered light images were fitted with a 3D model for single scattering in an optically thin dust disk using a Markov chain Monte Carlo approach. We performed aperture photometry to derive the scattering and polarized phase functions, the polarization fraction, and the spectral scattering albedo for the dust particles in the disk. This method was also used to obtain the reflectance spectrum of the disk and, in turn, to retrieve the disk color and study the dust reflectivity in comparison to the debris disk HD 117214. We also performed the modeling of the HD 114082 light curve measured by TESS using models for planet transit and stellar activity to put constraints on the radius of the detected planet and its orbit. Last, we searched for additional planets in the system by combining archival radial velocity data, astrometry, and direct imaging. Results. The debris disk HD 114082 appears as an axisymmetric debris belt with a radius of similar to 0.37 '' (35 au), an inclination of similar to 83 degrees, and a wide inner cavity. Dust particles in HD 114082 have a maximum polarization fraction of similar to 17% and a higher reflectivity when compared to the debris disk HD 117214. This high reflectivity results in a spectral scattering albedo of similar to 0.65 for the HD 114082 disk at near-infrared wavelengths. The disk reflectance spectrum exhibits a red color at the position of the planetesimal belt and shows no obvious features, whereas that of HD 117214 might indicate the presence of CO2 ice. The analysis of TESS photometric data reveals a transiting planetary companion to HD 114082 with a radius of similar to 1 R-Jup on an orbit with a semimajor axis of 0.7 +/- 0.4 au. No additional planet was detected in the system when we combined the SPHERE images with constraints from astrometry and radial velocity. We reach deep sensitivity limits down to similar to 5 M-Jup at 50 au and similar to 10 M-Jup at 30 au from the central star.
  •  
12.
  • Liseau, René, 1949, et al. (author)
  • Resolving the cold debris disc around a planet-hosting star. PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L132
  • Journal article (peer-reviewed)abstract
    • Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims. The solar-type star q(1) Eri is known to be surrounded by debris, extended on scales of less than or similar to 30 ''. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods. The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6 '' to 12 '' over the wavelength range of 60 mu m to 210 mu m. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results. For the first time has the q(1) Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 mu m, 100 mu m and 160 mu m reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53 degrees. The results of image de-convolution indicate that i likely is larger than 63 degrees, where 90 degrees corresponds to an edge-on disc. Conclusions. The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q(1) Eri is surrounded by an about 40 AU wide ring at the radial distance of similar to 85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed.
  •  
13.
  • Maire, A. -L., et al. (author)
  • VLT/SPHERE astrometric confirmation and orbital analysis of the brown dwarf companion HR 2562 B
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Journal article (peer-reviewed)abstract
    • Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the far infrared. Interestingly, the companion location is compatible with an orbit coplanar with the disk and interior to the debris belt. This feature makes the system a valuable laboratory to analyze the formation of substellar companions in a circumstellar disk and potential disk-companion dynamical interactions. Aims. We aim to further characterize the orbital motion of HR 2562 B and its interactions with the host star debris disk. Methods. We performed a monitoring of the system over similar to 10 months in 2016 and 2017 with the VLT/SPHERE exoplanet imager. Results. We confirm that the companion is comoving with the star and detect for the first time an orbital motion at high significance, with a current orbital motion projected in the plane of the sky of 25 mas (similar to 0.85 au) per year. No orbital curvature is seen in the measurements. An orbital fit of the SPHERE and literature astrometry of the companion without priors on the orbital plane clearly indicates that its orbit is (quasi-)coplanar with the disk. To further constrain the other orbital parameters, we used empirical laws for a companion chaotic zone validated by N-body simulations to test the orbital solutions that are compatible with the estimated disk cavity size. Non-zero eccentricities (>0.15) are allowed for orbital periods shorter than 100 yr, while only moderate eccentricities up to similar to 0.3 for orbital periods longer than 200 yr are compatible with the disk observations. A comparison of synthetic Herschel images to the real data does not allow us to constrain the upper eccentricity of the companion.
  •  
14.
  • Marshall, J. P., et al. (author)
  • A Herschel resolved far-infrared dust ring around HD 207129
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 529
  • Journal article (peer-reviewed)abstract
    • Context. Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location. Aims. The Herschel DUNES key program is observing 133 nearby, Sun-like stars (
  •  
15.
  •  
16.
  • Eiroa, C., et al. (author)
  • Herschel discovery of a new class of cold, faint debris discs
  • 2011
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 536
  • Journal article (peer-reviewed)abstract
    • We present Herschel PACS 100 and 160 mu m observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby S tars). Our observations show small infrared excesses at 160 mu m for all three stars. HD 210277 also shows a small excess at 100 mu m, while the 100 mu m fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both alpha Men and HD 88230 are spatially resolved in the PACS 160 mu m images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from similar to 115 to
  •  
17.
  • Ertel, S., et al. (author)
  • Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A114-
  • Journal article (peer-reviewed)abstract
    • Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims. Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 mu m, 100 mu m, and 160 mu m simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust.
  •  
18.
  • Krivov, A., et al. (author)
  • HERSCHEL's "COLD DEBRIS DISKS": BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?
  • 2013
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 772:1
  • Journal article (peer-reviewed)abstract
    • Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around similar to 100 mu m or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 mu m, which is larger than the 100 mu m excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than similar to 100 mu m, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
  •  
19.
  • Marshall, J. P., et al. (author)
  • Herschel observations of the debris disc around HIP 92043
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 557
  • Journal article (peer-reviewed)abstract
    • Context. Typical debris discs are composed of particles ranging from several micron sized dust grains to km sized asteroidal bodies, and their infrared emission peaks at wavelengths 60-100 mu m. Recent Herschel DUNES observations have identified several debris discs around nearby Sun-like stars (F, G and K spectral type) with significant excess emission only at 160 mu m.Aims. We observed HIP 92043 (110 Her, HD 173667) at far-infrared and sub-millimetre wavelengths with Herschel PACS and SPIRE. Identification of the presence of excess emission from HIP 92043 and the origin and physical properties of any excess was undertaken through analysis of its spectral energy distribution (SED) and the PACS images.Methods. The PACS and SPIRE images were produced using the HIPE photProject map maker routine. Fluxes were measured using aperture photometry. A stellar photosphere model was scaled to optical and near infrared photometry and subtracted from the far-infared and sub-mm fluxes to determine the presence of excess emission. Source radial profiles were fitted using a 2D Gaussian and compared to a PSF model based on Herschel observations of alpha Boo to check for extended emission.Results. Clear excess emission from HIP 92043 was observed at 70 and 100 mu m. Marginal excess was observed at 160 and 250 mu m. Analysis of the images reveals that the source is extended at 160 mu m. A fit to the source SED is inconsistent with a photosphere and single temperature black body.Conclusions. The excess emission from HIP 92043 is consistent with the presence of an unresolved circumstellar debris disc at 70 and 100 mu m, with low probability of background contamination. The extended 160 mu m emission may be interpreted as an additional cold component to the debris disc or as the result of background contamination along the line of sight. The nature of the 160 mu m excess cannot be determined absolutely from the available data, but we favour a debris disc interpretation, drawing parallels with previously identified cold disc sources in the DUNES sample.
  •  
20.
  • Olofsson, J., et al. (author)
  • Resolving faint structures in the debris disk around TWA 7 Tentative detections of an outer belt, a spiral arm, and a dusty cloud
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at similar to 0.72 '' (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of similar to 13 degrees with a position angle of similar to 91 degrees east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of similar to 1.5 '' (similar to 52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11 ''. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at similar to 0.2 '' (similar to 7 au) and another belt at 0.72 '' (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 M-circle plus planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
  •  
21.
  • Sissa, E., et al. (author)
  • New disk discovered with VLT/SPHERE around the M star GSC 07396-00759
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Journal article (peer-reviewed)abstract
    • Debris disks are usually detected through the infrared excess over the photospheric level of their host star. The most favorable stars for disk detection are those with spectral types between A and K, while the statistics for debris disks detected around low-mass M-type stars is very low, either because they are rare or because they are more difficult to detect. Terrestrial planets, on the other hand, may be common around M-type stars. Here, we report on the discovery of an extended (likely) debris disk around the M-dwarf GSC 07396-00759. The star is a wide companion of the close accreting binary V4046 Sgr. The system probably is a member of the beta Pictoris Moving Group. We resolve the disk in scattered light, exploiting high-contrast, high-resolution imagery with the two near-infrared subsystems of the VLT/SPHERE instrument, operating in the YJ bands and the H2H3 doublet. The disk is clearly detected up to 1.5 '' (similar to 110 au) from the star and appears as a ring, with an inclination i similar to 83 degrees, and a peak density position at similar to 70 au. The spatial extension of the disk suggests that the dust dynamics is affected by a strong stellar wind, showing similarities with the AU Mic system that has also been resolved with SPHERE. The images show faint asymmetric structures at the widest separation in the northwest side. We also set an upper limit for the presence of giant planets to 2 M-J. Finally, we note that the 2 resolved disks around M-type stars of 30 such stars observed with SPHERE are viewed close to edge-on, suggesting that a significant population of debris disks around M dwarfs could remain undetected because of an unfavorable orientation.
  •  
22.
  • Wiegert, Joachim, 1985, et al. (author)
  • How dusty is alpha Centauri? : Excess or non-excess over the infrared photospheres of main-sequence stars
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 563, s. A102-
  • Journal article (peer-reviewed)abstract
    • Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary alpha Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the alpha Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, T-min, of alpha Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion alpha Cen B. Using the alpha Cen stars as templates, we study the possible effects that T-min may have on the detectability of unresolved dust discs around other stars. Methods. We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around alpha Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than alpha Cen, a fractional dust luminosity f(d) equivalent to L-dust/L-star similar to 2 x 10(-7) could account for SEDs that do not exhibit the T-min effect. This is comparable to estimates of f(d) for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5 sigma level are observed at 24 mu m for both alpha Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to f(d) similar to (1-3) x 10(-5), i.e. some 10(2) times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the alpha Cen stars, viz. less than or similar to 4 x 10(-6) M-(sic) of 4 to 1000 mu m size grains, distributed according to n(a) proportional to a(-3.5). Similarly, for filled-in T-min emission, corresponding Edgeworth-Kuiper belts could account for similar to 10(-3) M-(sic) of dust. Conclusions. Our far-infrared observations lead to estimates of upper limits to the amount of circumstellar dust around the stars alpha Cen A and B. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The far-infrared spectral energy distribution of alpha Cen B is marginally consistent with the presence of a minimum temperature region in the upper atmosphere of the star. We also show that an alpha Cen A-like temperature minimum may result in an erroneous apprehension about the presence of dust around other, more distant stars.
  •  
23.
  •  
24.
  • Duchenne, F., et al. (author)
  • Phenological shifts alter the seasonal structure of pollinator assemblages in Europe
  • 2020
  • In: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 4:1, s. 115-121
  • Journal article (peer-reviewed)abstract
    • Pollinators play an important role in terrestrial ecosystems by providing key ecosystem functions and services to wild plants and crops, respectively. The sustainable provision of such ecosystem functions and services requires diverse pollinator communities over the seasons. Despite evidence that climate warming shifts pollinator phenology, a general assessment of these shifts and their consequences on pollinator assemblages is still lacking. By analysing phenological shifts of over 2,000 species, we show that, on average, the mean flight date of European pollinators shifted to be 6 d earlier over the last 60 yr, while their flight period length decreased by 2 d. Our analysis further reveals that these shifts have probably altered the seasonal distribution of pollination function and services by decreasing the overlap among pollinators’ phenologies within European assemblages, except in the most northeastern part of Europe. Such changes are expected to decrease the functional redundancy and complementarity of pollinator assemblages and, therefore, might alter the performance of pollination function and services and their robustness to ongoing pollinator extinctions.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view