SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tokarz M.) "

Search: WFRF:(Tokarz M.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Acharya, B. S., et al. (author)
  • Introducing the CTA concept
  • 2013
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Journal article (other academic/artistic)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (author)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • In: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Journal article (peer-reviewed)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Herique, A., et al. (author)
  • Direct observations of asteroid interior and regolith structure : Science measurement requirements
  • 2018
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 62:8, s. 2141-2162
  • Journal article (peer-reviewed)abstract
    • Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling of formation and evolution. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape asteroid internal structures? Is the composition and size distribution observed on the surface representative of the bulk? These questions are crucial to understand small bodies' history from accretion in the early Solar System to the present, and direct measurements are needed to answer these questions for the benefit of science as well as for planetary defense or exploration. Radar is one of the main instruments capable of sounding asteroids to characterize internal structure from sub-meter to global scale. In this paper, we review the science case for direct observation of the deep internal structure and regolith of a rocky asteroid of kilometer size or smaller. We establish the requirements and model dielectric properties of asteroids to outline a possible instrument suite, and highlight the capabilities of radar instrumentation to achieve these observations. We then review the expected science return including secondary objectives contributing to the determination of the gravitational field, the shape model, and the dynamical state. This work is largely inherited from MarcoPolo-R and AIDA/AIM studies.
  •  
4.
  •  
5.
  • Fischer, G., et al. (author)
  • Calibration of the JUICE RWI Antennas by Numerical Simulation
  • 2021
  • In: Radio Science. - : American Geophysical Union (AGU). - 0048-6604 .- 1944-799X. ; 56:11
  • Journal article (peer-reviewed)abstract
    • The reception properties of the Radio Wave Instrument (RWI) onboard JUICE (Jupiter Icy Moons Explorer) have been determined using numerical methods applied to a mesh-grid model of the spacecraft. The RWI is part of the RPWI (Radio and Plasma Wave Investigation) and consists of three perpendicular dipoles mounted on a long boom. We determined their effective lengths vectors and capacitive impedances of 8-9 pF. We also investigated the change in effective antenna angles as a function of solar panel rotation and calculated the directivity of the antennas at higher frequencies up to the maximum frequency of 45 MHz of the receiver. We found that the RWI dipoles can be used for direction-finding with an accuracy of 2 degrees up to a frequency of 1.5 MHz. Additionally we calculated the influence of strong pulses from the JUICE active radar on RPWI and found that they should do no harm to its sensors and receivers.
  •  
6.
  • Karlsson, A., et al. (author)
  • Nanofluidic networks based on surfactant membrane technology
  • 2003
  • In: Analytical Chemistry. - 0003-2700 .- 1520-6882. ; 75:11, s. 2529-37
  • Journal article (peer-reviewed)abstract
    • We explore possibilities to construct nanoscale analytical devices based on lipid membrane technology. As a step toward this goal, we present nanotube-vesicle networks with fluidic control, where the nanotube segments reside at, or very close (<2 microm) to optically transparent surfaces. These nanofluidic systems allow controlled transport as well as LIF detection of single nanoparticles. In the weak-adhesion regime, immobilized vesicles can be approximated as perfect spheres with nanotubes attached at half the height of the vesicle in the axial (z) dimension. In the strong-adhesion regime (relative contact area, Sr* approximately 0.3), nanotubes can be adsorbed to the surface with a distance to the interior of the nanotubes defined by the membrane thickness of approximately 5 nm. Strong surface adsorption restricts nanotube self-organization, enabling networks of nanotubes with arbitrary geometries. We demonstrate LIF detection of single nanoparticles (30-nm-diameter fluorescent beads) inside single nanotubes. Transport of nanoparticles was induced by a surface tension differential applied across nanotubes using a hydrodynamic injection protocol. Controlled transport in nanotubes together with LIF detection enables construction of nanoscale fluidic devices with potential to operate with single molecules. This opens up possibilities to construct analytical platforms with characteristic length scales and volume orders of magnitudes smaller than employed in traditional microfluidic devices.
  •  
7.
  • Karlsson, A., et al. (author)
  • Nanofluidic networks based on surfactant membrane technology
  • 2003
  • In: Analytical Chemistry. - 0003-2700 .- 1520-6882. ; 75:11, s. 2529-37
  • Journal article (peer-reviewed)abstract
    • We explore possibilities to construct nanoscale analytical devices based on lipid membrane technology. As a step toward this goal, we present nanotube-vesicle networks with fluidic control, where the nanotube segments reside at, or very close (
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view