SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tychoniec L.) "

Search: WFRF:(Tychoniec L.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gieser, C., et al. (author)
  • JOYS: Disentangling the warm and cold material in the high-mass IRAS 23385+6053 cluster
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 679
  • Journal article (peer-reviewed)abstract
    • Context. High-mass star formation occurs in a clustered mode where fragmentation is observed from an early stage onward. Young protostars can now be studied in great detail with the recently launched James Webb Space Telescope (JWST). Aims. We study and compare the warm (>100 K) and cold (<100 K) material toward the high-mass star-forming region (HMSFR) IRAS 23385+6053 (IRAS 23385 hereafter) combining high-angular-resolution observations in the mid-infrared (MIR) with the JWST Observations of Young protoStars (JOYS) project and with the NOrthern Extended Millimeter Array (NOEMA) at millimeter (mm) wavelengths at angular resolutions of 0.a2 1.a0. Methods. We investigated the spatial morphology of atomic and molecular species using line-integrated intensity maps. We estimated the temperature and column density of different gas components using H2 transitions (warm and hot component) and a series of CH3CN transitions as well as 3 mm continuum emission (cold component). Results. Toward the central dense core of IRAS 23385, the material consists of relatively cold gas and dust ( 50 K), while multiple outflows create heated and/or shocked H2 and show enhanced temperatures ( 400 K) along the outflow structures. An energetic outflow with enhanced emission knots of [FeII] and [NiII] suggests J-type shocks, while two other outflows have enhanced emission of only H2 and [SI] caused by C-type shocks. The latter two outflows are also more prominent in molecular line emission at mm wavelengths (e.g., SiO, SO, H2CO, and CH3OH). Data of even higher angular resolution are needed to unambiguously identify the outflow-driving sources given the clustered nature of IRAS 23385. While most of the forbidden fine structure transitions are blueshifted, [NeII] and [NeIII] peak at the source velocity toward the MIR source A/mmA2 suggesting that the emission is originating from closer to the protostar. Conclusions. The warm and cold gas traced by MIR and mm observations, respectively, are strongly linked in IRAS 23385. The outflows traced by MIR H2 lines have molecular counterparts in the mm regime. Despite the presence of multiple powerful outflows that cause dense and hot shocks, a cold dense envelope still allows star formation to further proceed. To study and fully understand the spatially resolved MIR properties, a representative sample of low- and high-mass protostars has to be probed using JWST.
  •  
2.
  • Francis, L., et al. (author)
  • JOYS: MIRI/MRS spectroscopy of gas-phase molecules from the high-mass star-forming region IRAS 23385+6053
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Context. Space-based mid-infrared (IR) spectroscopy is a powerful tool for the characterization of important star formation tracers of warm gas which are unobservable from the ground. The previous mid-IR spectra of bright high-mass protostars with the Infrared Space Observatory (ISO) in the hot-core phase typically show strong absorption features from molecules such as CO2, C2H2, and HCN. However, little is known about their fainter counterparts at earlier stages. Aims. We aim to characterize the gas-phase molecular features in James Webb Space Telescope Mid-Infrared Instrument Medium Resolution Spectrometer (MIRI/MRS) spectra of the young and clustered high-mass star-forming region IRAS 23385+6053. Methods. Spectra were extracted from several locations in the MIRI/MRS field of view, targeting two mid-IR sources tracing embedded massive protostars as well as three H2 bright outflow knots at distances of >8000 au from the multiple. Molecular features in the spectra were fit with local thermodynamic equilibrium (LTE) slab models, with their caveats discussed in detail. Results. Rich molecular spectra with emission from CO, H2, HD, H2O, C2H2, HCN, CO2, and OH are detected towards the two mid-IR sources. However, only CO and OH are seen towards the brightest H2 knot positions, suggesting that the majority of the observed species are associated with disks or hot core regions rather than outflows or shocks. The LTE model fits to 12CO2, C2H2, HCN emission suggest warm 120a-200 K emission arising from a disk surface around one or both protostars. The abundances of CO2 and C2H2 of ~10âà  à  7 are consistent with previous observations of high-mass protostars. Weak ~500 K H2O emission at ~6a-7 μm is detected towards one mid-IR source, whereas 250a-1050 K H2O absorption is found in the other. The H2O absorption may occur in the disk atmosphere due to strong accretion-heating of the midplane, or in a disk wind viewed at an ideal angle for absorption. CO emission may originate in the hot inner disk or outflow shocks, but NIRSpec data covering the 4.6 μm band head are required to determine the physical conditions of the CO gas, as the high temperatures seen in the MIRI data may be due to optical depth. OH emission is detected towards both mid-IR source positions and one of the shocks, and is likely excited by water photodissociation or chemical formation pumping in a highly non-LTE manner. Conclusions. The observed molecular spectra are consistent with disks having already formed around two protostars in the young IRAS 23385+6054 system. Molecular features mostly appear in emission from a variety of species, in contrast to the more evolved hot core phase protostars which typically show only absorption; however, further observations of young high-mass protostars are needed to disentangle geometry and viewing angle effects from evolution.
  •  
3.
  • Ray, T. P., et al. (author)
  • Outflows from the youngest stars are mostly molecular
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 622, s. 48-52
  • Journal article (peer-reviewed)abstract
    • The formation of stars and planets is accompanied not only by the build-up of matter, namely accretion, but also by its expulsion in the form of highly supersonic jets that can stretch for several parsecs1,2. As accretion and jet activity are correlated and because young stars acquire most of their mass rapidly early on, the most powerful jets are associated with the youngest protostars3. This period, however, coincides with the time when the protostar and its surroundings are hidden behind many magnitudes of visual extinction. Millimetre interferometers can probe this stage but only for the coolest components3. No information is provided on the hottest (greater than 1,000 K) constituents of the jet, that is, the atomic, ionized and high-temperature molecular gases that are thought to make up the jet's backbone. Detecting such a spine relies on observing in the infrared that can penetrate through the shroud of dust. Here we report near-infrared observations of Herbig-Haro 211 from the James Webb Space Telescope, an outflow from an analogue of our Sun when it was, at most, a few times 104 years old. These observations reveal copious emission from hot molecules, explaining the origin of the 'green fuzzies'4-7 discovered nearly two decades ago by the Spitzer Space Telescope8. This outflow is found to be propagating slowly in comparison to its more evolved counterparts and, surprisingly, almost no trace of atomic or ionized emission is seen, suggesting its spine is almost purely molecular. Near-infrared imagery and spectroscopy from JWST of the Herbig-Haro 211 system, an analogue of the young Sun, reveals supersonic jets of hot molecules that can explain the origin of the 'green fuzzies' phenomenon.
  •  
4.
  • Rocha, W. R.M., et al. (author)
  • JWST Observations of Young protoStars (JOYS+): Detecting icy complex organic molecules and ions: I. CH4, SO2, HCOO, OCN, H2CO, HCOOH, CH3CH2OH, CH3CHO, CH3OCHO, and CH3COOH
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Context. Complex organic molecules (COMs) are ubiquitously detected in the gas phase and thought to be mostly formed on icy grains. Nevertheless, there have not been any unambiguous detections of COMs larger than CH3OH in ices reported thus far. Exploring this matter in greater detail has now become possible with the unprecedented possibilities offered by the James Webb Space Telescope (JWST) within the infrared (IR) spectral range with its very high sensitivity and spectral resolution in the critical 5 10 μm range, the fingerprint region of oxygen-bearing COMs. Aims. In the JWST Observations of Young protoStars (JOYS+) program, more than 30 protostars are undergoing observation with the Medium Resolution Spectrograph (MRS) of the Mid-IR Instrument (MIRI). The goal of this study is to comprehensively explore the COMs ice signatures in one low- and one high-mass protostar: NGC 1333 IRAS 2A and IRAS 23385+6053, respectively. Methods. We performed global continuum and silicate subtractions of the MIRI-MRS spectra, followed by a local continuum subtraction in optical depth scale in the range around 6.8 and 8.6 μm, the ice COM fingerprint region. We explored different choices for the local continuum and silicate subtraction. Next, we fit the observational data with a large sample of available IR laboratory ice spectra. We used the ENIIGMA fitting tool, a genetic algorithm-based code that not only finds the best fit between the lab data and the observations, but also performs a statistical analysis of the solutions, such as deriving the confidence intervals and quantifying fit degeneracy. Results. We report the best fits for the spectral ranges between 6.8 and 8.6 μm in NGC 1333 IRAS 2A and IRAS 23385+6053, originating from simple molecules and COMs, as well as negative ions. Overall, we find that ten chemical species are needed to reproduce the astronomical data. The strongest feature in this range (7.7 μm) is dominated by CH4, with contributions from SO2 and OCN. Our results indicate that the 7.2 and 7.4 μm bands are mostly dominated by HCOO. We also find statistically robust detections of COMs based on multiple bands, most notably, CH3CHO, CH3CH2OH, and CH3OCHO. We also report a likely detection of CH3COOH. Based on the ice column density ratios between CH3CH2OH and CH3CHO of NGC 1333 IRAS 2A and IRAS 23385+6053, we find compelling evidence that these COMs are formed on icy grains. Finally, the derived ice abundances for NGC 1333 IRAS 2A correlate well with those in comet 67P/GC within a factor of 5. Conclusions. Based on the high-quality JWST (MIRI-MRS) spectra, we conclude that COMs are present in interstellar ices, thus providing additional proof for the solid-state origin of these species in star-forming regions. In addition, the good correlation between the ice abundances in comet 67P and NGC 1333 IRAS 2A is fully in line with the idea that cometary COMs may be inherited from the early protostellar phases to a significant extent.
  •  
5.
  • Beuther, H., et al. (author)
  • JWST Observations of Young protoStars (JOYS): Outflows and accretion in the high-mass star-forming region IRAS 23385+6053
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Context. Understanding the earliest stages of star formation, and setting it in the context of the general cycle of matter in the interstellar medium, is a central aspect of research with the James Webb Space Telescope (JWST). Aims. The JWST program JOYS (JWST Observations of Young protoStars) aims to characterize the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS 23385+6053. Methods. The JOYS program uses the Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) with its integral field unit (IFU) to investigate a sample of high- and low-mass star-forming protostellar systems. Results. The full 5-? 28 μm MIRI MRS spectrum of IRAS 23385+6053 shows a plethora of interesting features. While the general spectrum is typical for an embedded protostar, we see many atomic and molecular gas lines boosted by the higher spectral resolution and sensitivity compared to previous space missions. Furthermore, ice and dust absorption features are also present. Here, we focus on the continuum emission, outflow tracers such as the H2(0-? 0)S(7), [FeII](4F9/2-6D9/2), and [NeII](2P1/2-2P3/2) lines, and the potential accretion tracer Humphreys α H I(7-6). The short-wavelength MIRI data resolve two continuum sources, A and B; mid-infrared source A is associated with the main millimeter continuum peak. The combination of mid-infrared and millimeter data reveals a young cluster in the making. Combining the mid-infrared outflow tracers H2, [FeII], and [NeII] with millimeter SiO data reveals a complex interplay of at least three molecular outflows driven by protostars in the forming cluster. Furthermore, the Humphreys α line is detected at a 3-?4σ? level toward the mid-infrared sources A and B. One can roughly estimate both accretion luminosities and corresponding accretion rates to be between ∼2.6 × 10-6 and ∼0.9 × 10-4 Mo yr-1. This is discussed in the context of the observed outflow rates. Conclusions. The analysis of the MIRI MRS observations for this young high-mass star-forming region reveals connected outflow and accretion signatures, as well as the enormous potential of JWST to boost our understanding of the physical and chemical processes at play during star formation.
  •  
6.
  • Tobin, John J., et al. (author)
  • The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class i Protostellar Disks
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 890:2
  • Journal article (peer-reviewed)abstract
    • We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/submillimeter Array at 0.87 mm at a resolution of ∼0.″1 (40 au), including observations with the Very Large Array at 9 mm toward 148 protostars at a resolution of ∼0.″08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9 mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are 44.9-3.4+5.8, 37.0-3.0+4.9, and 28.5-2.3+3.7 au, respectively, and the mean protostellar dust disk masses are 25.9-4.0+7.7, 14.9-2.2+3.8, 11.6-1.9+3.5 M⊙, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
  •  
7.
  • Van Gelder, M. L., et al. (author)
  • JOYS+: Mid-infrared detection of gas-phase SO 2 emission in a low-mass protostar
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Journal article (peer-reviewed)abstract
    • Context. Thanks to the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST), our ability to observe the star formation process in the infrared has greatly improved. Due to its unprecedented spatial and spectral resolution and sensitivity in the mid-infrared, JWST/MIRI can see through highly extincted protostellar envelopes and probe the warm inner regions. An abundant molecule in these warm inner regions is SO2, which is a common tracer of both outflow and accretion shocks as well as hot core chemistry. Aims. This paper presents the first mid-infrared detection of gaseous SO2 emission in an embedded low-mass protostellar system rich in complex molecules and aims to determine the physical origin of the SO2 emission. Methods. JWST/MIRI observations taken with the Medium Resolution Spectrometer (MRS) of the low-mass protostellar binary NGC 1333 IRAS 2A in the JWST Observations of Young protoStars (JOYS+) program are presented. The observations reveal emission from the SO2 ν3 asymmetric stretching mode at 7.35 µm. Using simple slab models and assuming local thermodynamic equilibrium (LTE), we derived the rotational temperature and total number of SO2 molecules. We then compared the results to those derived from high-angular-resolution SO2 data on the same scales (∼50−100 au) obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). Results. The SO2 emission from the ν3 band is predominantly located on ∼50−100 au scales around the mid-infrared continuum peak of the main component of the binary, IRAS 2A1. A rotational temperature of 92 ± 8 K is derived from the ν3 lines. This is in good agreement with the rotational temperature derived from pure rotational lines in the vibrational ground state (i.e., ν = 0) with ALMA (104 ± 5 K), which are extended over similar scales. However, the emission of the ν3 lines in the MIRI-MRS spectrum is not in LTE given that the total number of molecules predicted by a LTE model is found to be a factor of 2 × 104 higher than what is derived for the ν = 0 state from the ALMA data. This difference can be explained by a vibrational temperature that is ∼100 K higher than the derived rotational temperature of the ν = 0 state: Tvib ∼ 200 K versus Trot = 104 ± 5 K. The brightness temperature derived from the continuum around the ν3 band (∼7.35 µm) of SO2 is ∼180 K, which confirms that the ν3 = 1 level is not collisionally populated but rather infrared-pumped by scattered radiation. This is also consistent with the non-detection of the ν2 bending mode at 18−20 µm. The similar rotational temperature derived from the MIRI-MRS and ALMA data implies that they are in fact tracing the same molecular gas. The inferred abundance of SO2 , determined using the LTE fit to the lines of the vibrational ground state in the ALMA data, is 1.0 ± 0.3 × 10−8 with respect to H2, which is on the lower side compared to interstellar and cometary ices (10−8−10−7). Conclusions. Given the rotational temperature, the extent of the emission (∼100 au in radius), and the narrow line widths in the ALMA data (∼3.5 km s−1), the SO2 in IRAS 2A likely originates from ice sublimation in the central hot core around the protostar rather than from an accretion shock at the disk–envelope boundary. Furthermore, this paper shows the importance of radiative pumping and of combining JWST observations with those from millimeter interferometers such as ALMA to probe the physics on disk scales and to infer molecular abundances.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view