SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Verburg Peter H.) "

Search: WFRF:(Verburg Peter H.)

  • Result 1-25 of 27
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
2.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
3.
  • Kehoe, Laura, et al. (author)
  • Make EU trade with Brazil sustainable
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Journal article (other academic/artistic)
  •  
4.
  • Pilla, Rachel M., et al. (author)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
5.
  • Alexander, Peter, et al. (author)
  • Assessing uncertainties in land cover projections
  • 2017
  • In: Global Change Biology. - : Wiley. - 1354-1013. ; 23:2, s. 767-781
  • Journal article (peer-reviewed)abstract
    • Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
  •  
6.
  • Magliocca, Nicholas R., et al. (author)
  • From meta-studies to modeling: Using synthesis knowledge to build broadly applicable process-based land change models
  • 2015
  • In: Environmental Modelling & Software. - : Elsevier BV. - 1364-8152. ; 72, s. 10-20
  • Journal article (peer-reviewed)abstract
    • This paper explores how meta-studies can support the development of process-based land change models (LCMs) that can be applied across locations and scales. We describe a multi-step framework for model development and provide descriptions and examples of how meta-studies can be used in each step. We conclude that meta-studies best support the conceptualization and experimentation phases of the model development cycle, but cannot typically provide full model parameterizations. Moreover, meta-studies are particularly useful for developing agent-based LCMs that can be applied across a wide range of contexts, locations, and/or scales, because meta-studies provide both quantitative and qualitative data needed to derive agent behaviors more readily than from case study or aggregate data sources alone. Recent land change synthesis studies provide sufficient topical breadth and depth to support the development of broadly applicable process-based LCMs, as well as the potential to accelerate the production of generalized knowledge through model-driven synthesis. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
7.
  • Pilla, Rachel M., et al. (author)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
8.
  • Prestele, Reinhard, et al. (author)
  • Hotspots of uncertainty in land-use and land-cover change projections : a global-scale model comparison
  • 2016
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 22:12, s. 3967-3983
  • Journal article (peer-reviewed)abstract
    • Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.
  •  
9.
  •  
10.
  • Rudbeck Jepsen, Martin, et al. (author)
  • Transitions in European land-management regimes between 1800 and 2010
  • 2015
  • In: Land use policy. - : Elsevier BV. - 0264-8377 .- 1873-5754. ; 49:SI, s. 53-64
  • Journal article (peer-reviewed)abstract
    • Land use is a cornerstone of human civilization, but also intrinsically linked to many global sustainability challenges—from climate change to food security to the ongoing biodiversity crisis. Understanding the underlying technological, institutional and economic drivers of land-use change, and how they play out in different environmental, socio-economic and cultural contexts, is therefore important for identifying effective policies to successfully address these challenges. In this regard, much can be learned from studying long-term land-use change. We examined the evolution of European land management over the past 200 years with the aim of identifying (1) key episodes of changes in land management, and (2) their underlying technological, institutional and economic drivers. To do so, we generated narratives elaborating on the drivers of land use-change at the country level for 28 countries in Europe. We qualitatively grouped drivers into land-management regimes, and compared changes in management regimes across Europe. Our results allowed discerning seven land-management regimes, and highlighted marked heterogeneity regarding the types of management regimes occurring in a particular country, the timing and prevalence of regimes, and the conditions that result in observed bifurcations. However, we also found strong similarities across countries in the timing of certain land-management regime shifts, often in relation to institutional reforms (e.g., changes in EU agrarian policies or the emergence and collapse of the Soviet land management paradigm) or to technological innovations (e.g., drainage pipes, tillage and harvesting machinery, motorization, and synthetic fertilizers). Land reforms frequently triggered changes in land management, and the location and timing of reforms had substantial impacts on land-use outcomes. Finally, forest protection policies and voluntary cooperatives were important drivers of land-management changes. Overall, our results demonstrate that land-system changes should not be conceived as unidirectional developments following predefined trajectories, but rather as path-dependent processes that may be affected by various drivers, including sudden events.
  •  
11.
  • Sharma, Sapna, et al. (author)
  • A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009
  • 2015
  • In: Scientific Data. - : Macmillan Publishers Limited. - 2052-4463. ; 2
  • Journal article (peer-reviewed)abstract
    • Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
  •  
12.
  • Chrysafi, Anna, et al. (author)
  • Quantifying Earth system interactions for sustainable food production via expert elicitation
  • 2022
  • In: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 5:10, s. 830-842
  • Journal article (peer-reviewed)abstract
    • Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production.
  •  
13.
  • Gupta, Joyeeta, et al. (author)
  • Earth system justice needed to identify and live within Earth system boundaries
  • 2023
  • In: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 6:6, s. 630-638
  • Journal article (peer-reviewed)abstract
    • Living within planetary limits requires attention to justice as biophysical boundaries are not inherently just. Through collaboration between natural and social scientists, the Earth Commission defines and operationalizes Earth system justice to ensure that boundaries reduce harm, increase well-being, and reflect substantive and procedural justice. Such stringent boundaries may also affect ‘just access’ to food, water, energy and infrastructure. We show how boundaries may need to be adjusted to reduce harm and increase access, and challenge inequality to ensure a safe and just future for people, other species and the planet. Earth system justice may enable living justly within boundaries. 
  •  
14.
  • Lehsten, Veiko, et al. (author)
  • Disentangling the effects of land-use change, climate and CO2 on projected future European habitat types
  • 2015
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 24:6, s. 653-663
  • Journal article (peer-reviewed)abstract
    • AimTo project the potential European distribution of seven broad habitat categories (needle-leaved, broad-leaved, mixed and mediterranean forest, urban, grassland and cropland) in order to assess effects of land use, climate change and increase in CO2 on predicted habitat changes up to the year 2050. LocationEurope. MethodWe modelled the response of European vegetation to changes in land use, climate and CO2 by combining the land-use model Dyna-CLUE (based on the CORINE land-cover data) and the dynamic vegetation model LPJ-GUESS. Two reforestation options were explored: maintaining the current range of tree species (EFI) or promoting naturally occurring tree species (NAT). Climate data from two general circulation models and two SRES scenarios (A2 and B1) were used. The broad habitat types were classified according to a combination of land use and the dominant plant species. ResultsOur models predicted that croplands and grasslands are expected to decrease due to land-use change. Although climate change has a negative effect on needle-leaved forest, it is expected to maintain its area or even increase in the EFI reforestation option while mediterranean, broad-leaved and mixed forests are expected to increase markedly. All investigated drivers have shown some effect, but land use is the dominant contributor to broad habitat change except for needle-leaved and mixed which are mainly influenced by climate change. Main conclusionsLand use is predicted to have the greatest effect on broad habitat distribution according to our simulations. Hence in most parts of Europe mitigating actions should focus on land-use change rather than climate change. According to our simulation, the effects of the different drivers are not in general additive. In some cases they act synergistically and in some cases antagonistically. The projected habitat changes are a valuable tool for species distribution modelling and are available online.
  •  
15.
  • Lewis, Abigail S. L., et al. (author)
  • Anoxia begets anoxia : A positive feedback to the deoxygenation of temperate lakes
  • 2024
  • In: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:1
  • Journal article (peer-reviewed)abstract
    • Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time-series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyll a concentrations, and oxygen demand across the 656-lake dataset. Likewise, we found further support for these relationships by analyzing time-series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake-specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyll a in high-phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world.
  •  
16.
  • Mohamed, Awaz, et al. (author)
  • Securing Nature's Contributions to People requires at least 20%-25% (semi-)natural habitat in human-modified landscapes
  • 2024
  • In: One Earth. - 2590-3330 .- 2590-3322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The cascading effects of biodiversity decline on human well-being present a pressing challenge for sustainable development. Conservation efforts often prioritize safeguarding specific species, habitats, or intact ecosystems but overlook biodiversity's fundamental role in providing Nature's Contributions to People (NCP) in human -modified landscapes. Here, we systematically review 154 peer -reviewed studies to estimate the minimum levels of (semi -)natural habitat quantity, quality, and spatial configuration needed in human -modified landscapes to secure functional integrity essential for sustaining NCP provision. We find that the provision of multiple NCP is threatened when (semi -)natural habitat in the landscape falls below an area of 20%- 25% for each km2. Five NCP almost completely disappear below a level of 10% habitat. The exact quantity, quality, and spatial configuration of habitat required depends on local context and specific NCP. Today, about two-thirds of human -modified lands have insufficient (semi -)natural habitat, requiring action for NCP regeneration. Our findings serve as a generic guideline to target conservation actions outside natural areas.
  •  
17.
  • Obura, David O., et al. (author)
  • Achieving a nature- and people-positive future
  • 2023
  • In: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 6:2, s. 105-117
  • Research review (peer-reviewed)abstract
    • Despite decades of increasing investment in conservation, we have not succeeded in “bending the curve” of biodiversity decline. Efforts to meet new targets and goals for the next three decades risk repeating this outcome due to three factors: neglect of increasing drivers of decline; unrealistic expectations and time frames of biodiversity recovery; and insufficient attention to justice within and between generations and across countries. Our Earth system justice approach identifies six sets of actions that when tackled simultaneously address these failings: (1) reduce and reverse direct and indirect drivers causing decline; (2) halt and reverse biodiversity loss; (3) restore and regenerate biodiversity to a safe state; (4) raise minimum wellbeing for all; (5) eliminate over-consumption and excesses associated with accumulation of capital; and (6) uphold and respect the rights and responsibilities of all communities, present and future. Current conservation campaigns primarily address actions 2 and 3, with urgent upscaling of actions 1, 4, 5, and 6 needed to help deliver the post-2020 global biodiversity framework.
  •  
18.
  • Plieninger, Tobias, et al. (author)
  • Exploring ecosystem-change and society through a landscape lens : recent progress in European landscape research
  • 2015
  • In: Ecology and Society. - : Resilience Alliance, Inc.. - 1708-3087. ; 20:2
  • Journal article (peer-reviewed)abstract
    • Landscapes are closely linked to human well-being, but they are undergoing rapid and fundamental change. Understanding the societal transformation underlying these landscape changes, as well as the ecological and societal outcomes of landscape transformations across scales are prime areas for landscape research. We review and synthesize findings from six important areas of landscape research in Europe and discuss how these findings may advance the study of ecosystem change and society and its thematic key priorities. These six areas are: (1) linkages between people and the environment in landscapes, (2) landscape structure and land-use intensity, (3) long-term landscape history, (4) driving forces, processes, and actors of landscape change, (5) landscape values and meanings, and (6) landscape stewardship. We propose that these knowledge areas can contribute to the study of ecosystem change and society, considering nested multiscale dynamics of social-ecological systems; the stewardship of these systems and their ecosystem services; and the relationships between ecosystem services, human well-being, wealth, and poverty. Our synthesis highlights that knowledge about past and current landscape patterns, processes, and dynamics provides guidance for developing visions to support the sustainable stewardship of social-ecological systems under future conditions.
  •  
19.
  • Rammelt, Crelis F., et al. (author)
  • Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
  • 2023
  • In: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 6:2, s. 212-221
  • Journal article (peer-reviewed)abstract
    • The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  •  
20.
  • Raymond, Christopher, et al. (author)
  • Inclusive conservation and the Post-2020 Global Biodiversity Framework : Tensions and prospects
  • 2022
  • In: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 5:3, s. 252-264
  • Journal article (peer-reviewed)abstract
    • The draft Post-2020 Global Biodiversity Framework commits to achievement of equity and justice outcomes and represents a “relational turn” in how we understand inclusive conservation. Although “inclusivity” is drawn on as a means to engage diverse stakeholders, widening the framing of inclusivity can create new tensions with regard to how to manage protected areas. We first offer a set of tensions that emerge in the light of the relational turn in biodiversity conservation. Drawing on global case examples applying multiple methods of inclusive conservation, we then demonstrate that, by actively engaging in the interdependent phases of recognizing hybridity, enabling conditions for reflexivity and partnership building, tensions can not only be acknowledged but softened and, in some cases, reframed when managing for biodiversity, equity, and justice goals. The results can improve stakeholder engagement in protected area management, ultimately supporting better implementation of global biodiversity targets.
  •  
21.
  • Rockström, Johan, et al. (author)
  • Identifying a Safe and Just Corridor for People and the Planet
  • 2021
  • In: Earth's Future. - 2328-4277. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Keeping the Earth system in a stable and resilient state, to safeguard Earth's life support systems while ensuring that Earth's benefits, risks, and related responsibilities are equitably shared, constitutes the grand challenge for human development in the Anthropocene. Here, we describe a framework that the recently formed Earth Commission will use to define and quantify target ranges for a safe and just corridor that meets these goals. Although safe and just Earth system targets are interrelated, we see safe as primarily referring to a stable Earth system and just targets as being associated with meeting human needs and reducing exposure to risks. To align safe and just dimensions, we propose to address the equity dimensions of each safe target for Earth system regulating systems and processes. The more stringent of the safe or just target ranges then defines the corridor. Identifying levers of social transformation aimed at meeting the safe and just targets and challenges associated with translating the corridor to actors at multiple scales present scope for future work.
  •  
22.
  •  
23.
  •  
24.
  • Spake, Rebecca, et al. (author)
  • Unpacking ecosystem service bundles : Towards predictive mapping of synergies and trade-offs between ecosystem services
  • 2017
  • In: Global Environmental Change. - : Elsevier BV. - 0959-3780 .- 1872-9495. ; 47, s. 37-50
  • Journal article (peer-reviewed)abstract
    • Multiple ecosystem services (ES) can respond similarly to social and ecological factors to form bundles. Identifying key social-ecological variables and understanding how they co-vary to produce these consistent sets of ES may ultimately allow the prediction and modelling of ES bundles, and thus, help us understand critical synergies and trade-offs across landscapes. Such an understanding is essential for informing better management of multi-functional landscapes and minimising costly trade-offs. However, the relative importance of different social and biophysiCal drivers of ES bundles in different types of social-ecological systems remains unclear. As such, a bottom-up understanding of the determinants of ES bundles is a critical research gap in ES and sustainability science. Here, we evaluate the current methods used in ES bundle science and synthesize these into four steps that capture the plurality of methods used to examine predictors of ES bundles. We then apply these four steps to a cross-study comparison (North and South French Alps) of relationships between social-ecological variables and ES bundles, as it is widely advocated that cross-study comparisons are necessary for achieving a general understanding of predictors of ES associations. We use the results of this case study to assess the strengths and limitations of current approaches for understanding distributions of ES bundles. We conclude that inconsistency of spatial scale remains the primary barrier for understanding and predicting ES bundles. We suggest a hypothesis-driven approach is required to predict relationships between ES, and we outline the research required for such an understanding to emerge.
  •  
25.
  • Stewart-Koster, Ben, et al. (author)
  • Living within the safe and just Earth system boundaries for blue water
  • 2024
  • In: Nature Sustainability. - 2398-9629. ; 7:1, s. 53-63
  • Journal article (peer-reviewed)abstract
    • Safe and just Earth system boundaries (ESBs) for surface water and groundwater (blue water) have been defined for sustainable water management in the Anthropocene. Here we assessed whether minimum human needs could be met with surface water from within individual river basins alone and, where this is not possible, quantified how much groundwater would be required. Approximately 2.6 billion people live in river basins where groundwater is needed because they are already outside the surface water ESB or have insufficient surface water to meet human needs and the ESB. Approximately 1.4 billion people live in river basins where demand-side transformations would be required as they either exceed the surface water ESB or face a decline in groundwater recharge and cannot meet minimum needs within the ESB. A further 1.5 billion people live in river basins outside the ESB, with insufficient surface water to meet minimum needs, requiring both supply- and demand-side transformations. These results highlight the challenges and opportunities of meeting even basic human access needs to water and protecting aquatic ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 27
Type of publication
journal article (23)
research review (3)
other publication (1)
Type of content
peer-reviewed (24)
other academic/artistic (3)
Author/Editor
De Eyto, Elvira (3)
Farrell, S. (2)
Wang, M. (2)
Ackerman, Steven A. (2)
Allan, Rob (2)
Alves, Lincoln M. (2)
show more...
Amador, Jorge A. (2)
Andreassen, L. M. (2)
Arndt, Derek S. (2)
Azorin-Molina, César (2)
Bardin, M. U. (2)
Barichivich, Jonatha ... (2)
Baringer, Molly O. (2)
Barreira, Sandra (2)
Baxter, Stephen (2)
Becker, Andreas (2)
Bedka, Kristopher M. (2)
Bell, Gerald D. (2)
Belmont, M. (2)
Benedetti, Angela (2)
Berrisford, Paul (2)
Berry, David I. (2)
Bhatt, U. S. (2)
Bissolli, Peter (2)
Blake, Eric S. (2)
Bosilovich, Michael ... (2)
Boucher, Olivier (2)
Box, J. E. (2)
Boyer, Tim (2)
Braathen, Geir O. (2)
Bromwich, David H. (2)
Brown, R. (2)
Bulygina, Olga N. (2)
Burgess, D. (2)
Calderón, Blanca (2)
Camargo, Suzana J. (2)
Campbell, Jayaka D. (2)
Cappelen, J. (2)
Carter, Brendan R. (2)
Chambers, Don P. (2)
Christiansen, Hanne ... (2)
Christy, John R. (2)
Chung, E. S. (2)
Clem, Kyle R. (2)
Coldewey-Egbers, Mel ... (2)
Colwell, Steve (2)
Cooper, Owen R. (2)
Copland, L. (2)
Crouch, Jake (2)
Davis, Sean M. (2)
show less...
University
Stockholm University (13)
Uppsala University (8)
Lund University (6)
Swedish University of Agricultural Sciences (2)
Umeå University (1)
Royal Institute of Technology (1)
show more...
Linköping University (1)
Mid Sweden University (1)
Chalmers University of Technology (1)
show less...
Language
English (27)
Research subject (UKÄ/SCB)
Natural sciences (25)
Social Sciences (11)
Agricultural Sciences (3)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view