SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Villalobos Fabricio) "

Search: WFRF:(Villalobos Fabricio)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • del Cid, Carlos Calderon, et al. (author)
  • The Clade Replacement Theory: a framework to study age-dependent extinction
  • 2024
  • In: JOURNAL OF EVOLUTIONARY BIOLOGY. - 1010-061X .- 1420-9101. ; 37:3, s. 290-301
  • Journal article (peer-reviewed)abstract
    • There is no scientific consensus about whether and how species' evolutionary age, or the elapsed time since their origination, might affect their probability of going extinct. Different age-dependent extinction (ADE) patterns have been proposed in theoretical and empirical studies, while the existence of a consistent and universal pattern across the tree of life remains debated. If evolutionary age predicts species extinction probability, then the study of ADE should comprise the elapsed time and the ecological process acting on species from their origin to their extinction or to the present for extant species. Additionally, given that closely related species share traits associated with fitness, evolutionary proximity could generate similar ADE patterns. Considering the historical context and extinction selectivity based on evolutionary relatedness, we build on previous theoretical work to formalize the Clade Replacement Theory (CRT) as a framework that considers the ecological and evolutionary aspects of species age and extinction probability to produce testable predictions on ADE patterns. CRT's domain is the diversification dynamics of two or more clades competing for environmental space throughout time, and its propositions or derived hypotheses are as follows: (i) incumbency effects by an early arriving clade that limit the colonization and the diversification of a younger clade leading to a negative ADE scenario (younger species more prone to extinction than older ones) and (ii) an ecological shift triggered by an environmental change that imposes a new selective regime over the environmental space and leads to a positive ADE scenario (extinction probability increasing with age). From these propositions, we developed the prediction that the ADE scenario would be defined by whether an ecological shift happens or not. We discuss how the CRT could be tested with empirical data and provide examples where it could be applied. We hope this article will provide a common ground to unify results from different fields and foster new empirical tests of the mechanisms derived here while providing insights into CRT theoretical structuration.
  •  
2.
  • Muscarella, Robert, et al. (author)
  • The global abundance of tree palms
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Journal article (peer-reviewed)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
3.
  • Sánchez-Guillén, Rosa A., et al. (author)
  • The evolutionary history of colour polymorphism in Ischnura damselflies
  • 2018
  • In: Journal of evolutionary biology. - 1010-061X.
  • Journal article (peer-reviewed)abstract
    • A major challenge in evolutionary biology consists of understanding how genetic and phenotypic variation is created and maintained. In this study, we investigated the origin(s) and evolutionary patterns of the female-limited colour polymorphism in ischnuran damselflies. These consist of the presence of one to three colour morphs: one androchrome morph with a coloration that is similar to the male and two gynochrome morphs (infuscans and aurantiaca) with female-specific coloration. We (i) documented the colour and mating system of 44 of the 75 taxa within the genus Ischnura, (ii) reconstructed the evolutionary history of colour and mating system to identify the ancestral state, (iii) evaluated the stability of the colour morph status over time and (iv) tested for a correlation between colour and mating system. We found that the ancestral female colour of Ischnura was monomorphic and aurantiaca and that colour morph status changed over time, characterized by many gains and losses across the species tree. Our results further showed that colour polymorphism is significantly more frequent among polyandric species, whereas monandric species tend to be monomorphic. Research on some Ischnura species has shown that colour morphs have evolved to reduce male mating harassment, and our finding that the same phenotypic morphs have evolved multiple times (convergent evolution) suggests that several species in this genus might be experiencing similar selective pressures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view