SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Villani S.) "

Search: WFRF:(Villani S.)

  • Result 1-25 of 54
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2012
  • swepub:Mat__t (peer-reviewed)
  •  
2.
  • Aad, G., et al. (author)
  • 2012
  • Journal article (peer-reviewed)
  •  
3.
  • Aad, G., et al. (author)
  • 2013
  • swepub:Mat__t (peer-reviewed)
  •  
4.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
5.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
6.
  • 2011
  • swepub:Mat__t
  •  
7.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
8.
  • Aad, G., et al. (author)
  • 2010
  • swepub:Mat__t
  •  
9.
  • Aad, G., et al. (author)
  • 2011
  • swepub:Mat__t
  •  
10.
  •  
11.
  •  
12.
  • Aad, G., et al. (author)
  • The ATLAS Simulation Infrastructure
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 823-874
  • Journal article (peer-reviewed)abstract
    • The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.
  •  
13.
  • Aad, G., et al. (author)
  • Readiness of the ATLAS Tile Calorimeter for LHC collisions
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:4, s. 1193-1236
  • Journal article (peer-reviewed)abstract
    • The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%.
  •  
14.
  • Aad, G., et al. (author)
  • The ATLAS Inner Detector commissioning and calibration
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 70:3, s. 787-821
  • Journal article (peer-reviewed)abstract
    • The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1 +/- 0.9 mu m and a relative momentum resolution sigma (p) /p=(4.83 +/- 0.16)x10(-4) GeV(-1)xp (T) have been measured for high momentum tracks.
  •  
15.
  • Aad, G., et al. (author)
  • Studies of the performance of the ATLAS detector using cosmic-ray muons
  • 2011
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 71:3
  • Journal article (peer-reviewed)abstract
    • Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.
  •  
16.
  •  
17.
  •  
18.
  • Abate, E., et al. (author)
  • Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS (A Toroidal LHC ApparatuS) Inner Detector provides charged particle tracking in the centre of the ATLAS experiment at the Large Hadron Collider (LHC). The Inner Detector consists of three subdetectors: the Pixel Detector, the Semiconductor Tracker (SCT), and the Transition Radiation Tracker (TRT). This paper summarizes the tests that were carried out at the final stage of SCT+TRT integration prior to their installation in ATLAS. The combined operation and performance of the SCT and TRT barrel and endcap detectors was investigated through a series of noise tests, and by recording the tracks of cosmic rays. This was a crucial test of hardware and software of the combined tracker detector systems. The results of noise and cross-talk tests on the SCT and TRT in their final assembled configuration, using final readout and supply hardware and software, are reported. The reconstruction and analysis of the recorded cosmic tracks allowed testing of the offline analysis chain and verification of basic tracker performance parameters, such as efficiency and spatial resolution, in combined operation before installation.
  •  
19.
  • Abdesselam, A., et al. (author)
  • The ATLAS semiconductor tracker end-cap module
  • 2007
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 575:3, s. 353-389
  • Journal article (peer-reviewed)abstract
    • The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker. (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 mu s buffer. The highest anticipated dose after 10 years operation is 1.4x10(14) cm(-2) in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area similar to 70 cm(2), each having 2 x 768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X-0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e(-) equivalent noise charge (ENC) rising to only 1800e(-) ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 mu m (r phi) resolution perpendicular to the strip directions or 580 mu m radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.
  •  
20.
  • Abdesselam, A., et al. (author)
  • Engineering for the ATLAS SemiConductor Tracker (SCT) end-cap
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3
  • Journal article (peer-reviewed)abstract
    • The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-scale tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008.
  •  
21.
  • Abdesselam, A., et al. (author)
  • The barrel modules of the ATLAS semiconductor tracker
  • 2006
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 568:2, s. 642-671
  • Journal article (peer-reviewed)abstract
    • This paper describes the silicon microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The module requirements, components and assembly techniques are given, as well as first results of the module performance on the fully assembled barrels that make up the detector being installed in the ATLAS experiment.
  •  
22.
  • Durno, C., et al. (author)
  • Survival Benefit for Individuals With Constitutional Mismatch Repair Deficiency Undergoing Surveillance
  • 2021
  • In: Journal of Clinical Oncology. - : American Society of Clinical Oncology (ASCO). - 0732-183X .- 1527-7755. ; 39:25
  • Journal article (peer-reviewed)abstract
    • PURPOSE Constitutional mismatch repair deficiency syndrome (CMMRD) is a lethal cancer predisposition syndrome characterized by early-onset synchronous and metachronous multiorgan tumors. We designed a surveillance protocol for early tumor detection in these individuals. PATIENTS AND METHODS Data were collected from patients with confirmed CMMRD who were registered in the International Replication Repair Deficiency Consortium. Tumor spectrum, efficacy of the surveillance protocol, and malignant transformation of low-grade lesions were examined for the entire cohort. Survival outcomes were analyzed for patients followed prospectively from the time of surveillance implementation. RESULTS A total of 193 malignant tumors in 110 patients were identified. Median age of first cancer diagnosis was 9.2 years (range: 1.7-39.5 years). For patients undergoing surveillance, all GI and other solid tumors, and 75% of brain cancers were detected asymptomatically. By contrast, only 16% of hematologic malignancies were detected asymptomatically (P < .001). Eighty-nine patients were followed prospectively and used for survival analysis. Five-year overall survival (OS) was 90% (95% CI, 78.6 to 100) and 50% (95% CI, 39.2 to 63.7) when cancer was detected asymptomatically and symptomatically, respectively (P = .001). Patient outcome measured by adherence to the surveillance protocol revealed 4-year OS of 79% (95% CI, 54.8 to 90.9) for patients undergoing full surveillance, 55% (95% CI, 28.5 to 74.5) for partial surveillance, and 15% (95% CI, 5.2 to 28.8) for those not under surveillance (P < .0001). Of the 64 low-grade tumors detected, the cumulative likelihood of transformation from low-to high-grade was 81% for GI cancers within 8 years and 100% for gliomas in 6 years. CONCLUSION Surveillance and early cancer detection are associated with improved OS for individuals with CMMRD.
  •  
23.
  • Das, A., et al. (author)
  • Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency
  • 2022
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28:1, s. 125-135
  • Journal article (peer-reviewed)abstract
    • Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion–deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10–100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in ‘immunologically cold’ tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy. © 2022, The Author(s).
  •  
24.
  • Gonzalez-Sevilla, S., et al. (author)
  • A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC
  • 2014
  • In: Journal of Instrumentation. - 1748-0221. ; 9, s. P02003-
  • Journal article (peer-reviewed)abstract
    • The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 x 10(34) cm(-2) s(-1). For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.
  •  
25.
  • Diez, S., et al. (author)
  • A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC
  • 2014
  • In: Journal of Instrumentation. - 1748-0221. ; 9, s. P03012-
  • Journal article (peer-reviewed)abstract
    • A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 54
Type of publication
journal article (45)
conference paper (1)
Type of content
peer-reviewed (47)
other academic/artistic (1)
Author/Editor
Allport, P. P. (21)
Anghinolfi, F. (21)
Ferrere, D. (21)
Garcia, C. (21)
Lacasta, C. (21)
Clark, A. (20)
show more...
Dervan, P. (20)
Hara, K. (20)
Hessey, N. P. (20)
Ikegami, Y. (20)
Bethke, S. (19)
Carter, J. R. (19)
Charlton, D. G. (19)
Cheplakov, A. (19)
Chouridou, S. (19)
Chu, M. L. (19)
Cindro, V. (19)
Colijn, A. P. (19)
Costa, M. J. (19)
D'Onofrio, M. (19)
Dabrowski, W. (19)
Dawson, I. (19)
Dolezal, Z. (19)
Dwuznik, M. (19)
Escobar, C. (19)
Ferrari, P. (19)
Fox, H. (19)
Fuster, J. (19)
Gallop, B. J. (19)
Gorisek, A. (19)
Gornicki, E. (19)
Hill, J. C. (19)
Issever, C. (19)
Jakobs, K. (19)
Jones, T. J. (19)
Kodys, P. (19)
Koffeman, E. (19)
Kohriki, T. (19)
Kondo, T. (19)
Koperny, S. (19)
Kramberger, G. (19)
Lee, S. C. (19)
Lester, C. G. (19)
Mandic, I. (19)
McMahon, S. J. (19)
Mikuz, M. (19)
Moser, H. G. (19)
Murray, W. J. (19)
Nagai, K. (19)
Nakano, I. (19)
show less...
University
Uppsala University (28)
University of Gothenburg (13)
Lund University (9)
Umeå University (8)
Stockholm University (8)
Royal Institute of Technology (7)
show more...
Karolinska Institutet (6)
Linköping University (2)
Örebro University (1)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (54)
Research subject (UKÄ/SCB)
Medical and Health Sciences (19)
Natural sciences (14)
Engineering and Technology (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view