SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Villarroel Nicolas) "

Search: WFRF:(Villarroel Nicolas)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Householder, John Ethan, et al. (author)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • In: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
2.
  • Hurtado, Daniel E., et al. (author)
  • Improving the Accuracy of Registration-Based Biomechanical Analysis : A Finite Element Approach to Lung Regional Strain Quantification
  • 2016
  • In: IEEE Transactions on Medical Imaging. - 0278-0062 .- 1558-254X. ; 35:2, s. 580-588
  • Journal article (peer-reviewed)abstract
    • Tissue deformation plays an important role in lung physiology, as lung parenchyma largely deforms during spontaneous ventilation. However, excessive regional deformation may lead to lung injury, as observed in patients undergoing mechanical ventilation. Thus, the accurate estimation of regional strain has recently received great attention in the intensive care community. In this work, we assess the accuracy of regional strain maps computed from direct differentiation of B-Spline (BS) interpolations, a popular technique employed in non-rigid registration of lung computed tomography (CT) images. We show that, while BS-based registration methods give excellent results for the deformation transformation, the strain field directly computed from BS derivatives results in predictions that largely oscillate, thus introducing important errors that can even revert the sign of strain. To alleviate such spurious behavior, we present a novel finite-element (FE) method for the regional strain analysis of lung CT images. The method follows from a variational strain recovery formulation, and delivers a continuous approximation to the strain field in arbitrary domains. From analytical benchmarks, we show that the FE method results in errors that are a fraction of those found for the BS method, both in an average and pointwise sense. The application of the proposed FE method to human lung CT images results in 3D strain maps are heterogeneous and smooth, showing high consistency with specific ventilation maps reported in the literature. We envision that the proposed FE method will considerably improve the accuracy of image-based biomechanical analysis, making it reliable enough for routine medical applications.
  •  
3.
  • Hurtado, Daniel E., et al. (author)
  • Spatial patterns and frequency distributions of regional deformation in the healthy human lung
  • 2017
  • In: Biomechanics and Modeling in Mechanobiology. - : SPRINGER HEIDELBERG. - 1617-7959 .- 1617-7940. ; 16:4, s. 1413-1423
  • Journal article (peer-reviewed)abstract
    • Understanding regional deformation in the lung has long attracted the medical community, as parenchymal deformation plays a key role in respiratory physiology. Recent advances in image registration make it possible to noninvasively study regional deformation, showing that volumetric deformation in healthy lungs follows complex spatial patterns not necessarily shared by all subjects, and that deformation can be highly anisotropic. In this work, we systematically study the regional deformation in the lungs of eleven human subjects by means of in vivo image-based biomechanical analysis. Regional deformation is quantified in terms of 3D maps of the invariants of the right stretch tensor, which are related to regional changes in length, surface and volume. Based on the histograms of individual lungs, we show that log-normal distributions adequately represent the frequency distribution of deformation invariants in the lung, which naturally motivates the normalization of the invariant fields in terms of the log-normal score. Normalized maps of deformation invariants allow for a direct intersubject comparison, as they display spatial patterns of deformation in a range that is common to all subjects. For the population studied, we find that lungs in supine position display a marked gradient along the gravitational direction not only for volumetric but also for length and surface regional deformation, highlighting the role of gravity in the regional deformation of normal lungs under spontaneous breathing.
  •  
4.
  • Luize, Bruno Garcia, et al. (author)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • In: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Journal article (peer-reviewed)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
5.
  • Retamal, Jaime, et al. (author)
  • Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? : An Experimental Porcine Study
  • 2018
  • In: Critical Care Medicine. - 0090-3493 .- 1530-0293. ; 46:6, s. e591-e599
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome.DESIGN: Retrospective analysis of CT images and positron emission tomography images using [18F]fluoro-2-deoxy-D-glucose.SETTING: University animal research laboratory.SUBJECTS: Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls.INTERVENTIONS: Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal.MEASUREMENTS AND MAIN RESULTS: The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [18F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R2 = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals), which was not observed in the control animals.CONCLUSION: In this porcine acute respiratory distress syndrome model, regional lung strain was spatially correlated with regional inflammation, supporting that strain is a relevant and prominent determinant of ventilator-induced lung injury.
  •  
6.
  • Retamal, Jaime, et al. (author)
  • Regional pulmonary deformation is positively correlated with regional lung inflammation assessed by 18F-FDG positron emission tomography / computed tomography
  • Other publication (other academic/artistic)abstract
    • Objective: Lung deformation beyond of physiological capacity is associated with cell death and inflammation. Lung strain has been estimated as a global strain, but uneven strain distribution may lead to regional stress concentrations and lung damage. Local lung inflammation can be estimated using PET imaging of [18F]fluoro-2-deoxy-D-glucose. We hypothesized that local lung deformation correlates well with local inflammation. The aim of this study was to assess local tidal deformations by using a new mathematical model of finite-elements to analyze CT images, and to correlate them with local inflammation in a porcine experimental model of early acute respiratory distress syndrome.Design: Retrospective images analysis, laboratory investigation.Setting: University animal research laboratory.Subjects: Seven piglets submitted to experimental ventilator-induced lung injury and five healthy ventilated controls.Intervention: Lung injury was induced by repeated lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [18F]fluoro-2-deoxy-D-glucose. CT scans were acquired at end expiration and end inspiration. Then maps of deformation were constructed and regional deformation was estimated. We divided the lung parenchyma in 10 horizontal ROIs, and correlations of local volumetric strain and [18F]fluoro-2-deoxy-D-glucose uptake were analyzed in each ROI.Measurements and Main Results: The deformation maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions. We found a strong correlation between local strain and inflammation (R2 > 0.5) for the whole lung, when we eliminate the 3/10 dorsal ROIs R2 increased until>0.8.Conclusion: the present findings suggest that the greater local stretches were mainly concentrated in the intermediate gravitational zones of injured heterogeneous lungs. Additionally, local lung deformations correlated well with local inflammation in this experimental model of VILI. And the new proposed image-based estimation of regional volumetric strain based on finite element interpolations has the potential to give new insights of local pathogenic mechanisms of VILI and how best design protective-ventilations strategies.
  •  
7.
  • ter Steege, Hans, et al. (author)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • In: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7
Type of publication
journal article (6)
other publication (1)
Type of content
peer-reviewed (6)
other academic/artistic (1)
Author/Editor
Bugedo, Guillermo (4)
Bruhn, Alejandro (4)
Retamal, Jaime (4)
Malhi, Yadvinder (3)
Phillips, Oliver L. (3)
Carvalho, Fernanda A ... (3)
show more...
ter Steege, Hans (3)
Barlow, Jos (3)
Berenguer, Erika (3)
Damasco, Gabriel, 19 ... (3)
Balslev, Henrik (3)
Holmgren, Milena (3)
Feeley, Kenneth J. (3)
Huamantupa-Chuquimac ... (3)
Rivas-Torres, Gonzal ... (3)
Farfan-Rios, William (3)
de Aguiar, Daniel P. ... (3)
Ahuite Reategui, Man ... (3)
Albuquerque, Bianca ... (3)
Alonso, Alfonso (3)
do Amaral, Dário Dan ... (3)
do Amaral, Iêda Leão (3)
Andrade, Ana (3)
de Andrade Miranda, ... (3)
Araujo-Murakami, Ale ... (3)
Arroyo, Luzmila (3)
Aymard C, Gerardo A. (3)
Baider, Cláudia (3)
Bánki, Olaf S. (3)
Baraloto, Chris (3)
Barbosa, Edelcilio M ... (3)
Barbosa, Flávia Rodr ... (3)
Brienen, Roel (3)
Camargo, José Luís (3)
Campelo, Wegliane (3)
Cano, Angela (3)
Cárdenas, Sasha (3)
Carrero Márquez, Yrm ... (3)
Castellanos, Hernán (3)
Castilho, Carolina V ... (3)
Cerón, Carlos (3)
Chave, Jerome (3)
Comiskey, James A. (3)
Correa, Diego F. (3)
Costa, Flávia R.C. (3)
Dallmeier, Francisco (3)
Dávila Doza, Hilda P ... (3)
Demarchi, Layon O. (3)
Dexter, Kyle G. (3)
Di Fiore, Anthony (3)
show less...
University
Uppsala University (4)
University of Gothenburg (3)
Language
English (7)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (2)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view