SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vishwakarma Dinesh Kumar) "

Sökning: WFRF:(Vishwakarma Dinesh Kumar)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Singh, Sachin Kumar, et al. (författare)
  • Soil erosion control from trash residues at varying land slopes under simulated rainfall conditions
  • 2023
  • Ingår i: Mathematical Biosciences and Engineering. - : American Institute of Mathematical Sciences. - 1551-0018. ; 20:6, s. 11403-11428
  • Tidskriftsartikel (refereegranskat)abstract
    • Trash mulches are remarkably effective in preventing soil erosion, reducing runoff-sediment transport-erosion, and increasing infiltration. The study was carried out to observe the sediment outflow from sugar cane leaf (trash) mulch treatments at selected land slopes under simulated rainfall conditions using a rainfall simulator of size 10 m × 1.2 m × 0.5 m with the locally available soil material collected from Pantnagar. In the present study, trash mulches with different quantities were selected to observe the effect of mulching on soil loss reduction. The number of mulches was taken as 6, 8 and 10 t/ha, three rainfall intensities viz. 11, 13 and 14.65 cm/h at 0, 2 and 4% land slopes were selected. The rainfall duration was fixed (10 minutes) for every mulch treatment. The total runoff volume varied with mulch rates for constant rainfall input and land slope. The average sediment concentration (SC) and sediment outflow rate (SOR) increased with the increasing land slope. However, SC and outflow decreased with the increasing mulch rate for a fixed land slope and rainfall intensity. The SOR for no mulch-treated land was higher than trash mulch-treated lands. Mathematical relationships were developed for relating SOR, SC, land slope, and rainfall intensity for a particular mulch treatment. It was observed that SOR and average SC values correlated with rainfall intensity and land slope for each mulch treatment. The developed models' correlation coefficients were more than 90%.
  •  
2.
  • Singh, Vijay Kumar, et al. (författare)
  • Novel Genetic Algorithm (GA) based hybrid machine learning-pedotransfer Function (ML-PTF) for prediction of spatial pattern of saturated hydraulic conductivity
  • 2022
  • Ingår i: Engineering Applications of Computational Fluid Mechanics. - : Taylor & Francis. - 1994-2060 .- 1997-003X. ; 16:1, s. 1082-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • Saturated hydraulic conductivity (Ks) is an important soil characteristic that controls water moves through the soil. On the other hand, its measurement is difficult, time-consuming, and expensive; hence Pedotransfer Functions (PTFs) are commonly used for its estimation. Despite significant development over the years, the PTFs showed poor performance in predicting Ks. Using Genetic Algorithm (GA), two hybrid Machine Learning based PTFs (ML-PTF), i.e. a combination of GA with Multilayer Perceptron (MLP-GA) and Support Vector Machine (SVM-GA), were proposed in this study. We compared the performances of four machine learning algorithms for different sets of predictors. The predictor combination containing sand, clay, Field Capacity, and Wilting Point showed the highest accuracy for all the ML-PTFs. Among the ML-PTFs, the SVM-GA algorithm outperformed the rest of the PTFs. It was noticed that the SVM-GA PTF demonstrated higher efficiency than the MLP-GA algorithm. The reference model for hydraulic conductivity prediction was selected as the SVM-GA PTF paired with the K-5 predictor variables. The proposed PTFs were compared with 160 models from past literature. It was found that the algorithms advocated were an improvement over these PTFs. The current model would help in efficient spatio-temporal measurement of hydraulic conductivity using pre-available databases.
  •  
3.
  • Kumar, Amarjeet, et al. (författare)
  • Development of Novel Hybrid Models for Prediction of Drought-and Stress-Tolerance Indices in Teosinte Introgressed Maize Lines Using Artificial Intelligence Techniques
  • 2022
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Maize (Zea mays subsp. mays) is a staple food crop in the world. Drought is one of the most common abiotic challenges that maize faces when it comes to growth, development, and production. Further knowledge of drought tolerance could aid with maize production. However, there has been less study focused on investigating in depth the drought tolerance of inbred maize lines using artificial intelligence techniques. In this study, multi-layer perceptron (MLP), support vector machine (SVM), genetic algorithm-based multi-layer perceptron (MLP-GA), and genetic algorithm-based support vector machine (SVM-GA) hybrid artificial intelligence algorithms were used for the prediction of drought tolerance and stress tolerance indices in teosinte maize lines. Correspondingly, the gamma test technique was applied to determine efficient input and output vectors. The potential of the developed models was evaluated based on statistical indices and graphical representations. The results of the gamma test based on the least value of gamma and standard error indices show that days of anthesis (DOA), days of silking (DOS), yield index (YI), and gross yield per plant (GYP) information vector arrangements were determined to be an efficient information vector combination for the drought-tolerance index (DTI) as well as the stress-tolerance index (STI). The MLP, SVM, MLP-GA, and SVM-GA algorithms’ results were compared based on statistical indices and visual interpretations that have satisfactorily predict the drought-tolerance index and stress-tolerance index in maize crops. The genetic algorithm-based hybrid models (MLP-GA and SVM-GA) were found to better predict the drought-tolerance index and stress-tolerance index in maize crops. Similarly, the SVM-GA model was found to have the highest potential to forecast the DTI and STI in maize crops, compared to the MLP, SVM, and MLP-GA models.
  •  
4.
  • Kumar, Deepak, et al. (författare)
  • Multi-ahead electrical conductivity forecasting of surface water based on machine learning algorithms
  • 2023
  • Ingår i: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The present research work focused on predicting the electrical conductivity (EC) of surface water in the Upper Ganga basin using four machine learning algorithms: multilayer perceptron (MLP), co-adaptive neuro-fuzzy inference system (CANFIS), random forest (RF), and decision tree (DT). The study also utilized the gamma test for selecting appropriate input and output combinations. The results of the gamma test revealed that total hardness (TH), magnesium (Mg), and chloride (Cl) parameters were suitable input variables for EC prediction. The performance of the models was evaluated using statistical indices such as Percent Bias (PBIAS), correlation coefficient (R), Willmott’s index of agreement (WI), Index of Agreement (PI), root mean square error (RMSE) and Legate-McCabe Index (LMI). Comparing the results of the EC models using these statistical indices, it was observed that the RF model outperformed the other algorithms. During the training period, the RF algorithm has a small positive bias (PBIAS = 0.11) and achieves a high correlation with the observed values (R = 0.956). Additionally, it shows a low RMSE value (360.42), a relatively good coefficient of efficiency (CE = 0.932), PI (0.083), WI (0.908) and LMI (0.083). However, during the testing period, the algorithm’s performance shows a small negative bias (PBIAS = − 0.46) and a good correlation (R = 0.929). The RMSE value decreases significantly (26.57), indicating better accuracy, the coefficient of efficiency remains high (CE = 0.915), PI (0.033), WI (0.965) and LMI (− 0.028). Similarly, the performance of the RF algorithm during the training and testing periods in Prayagraj. During the training period, the RF algorithm shows a PBIAS of 0.50, indicating a small positive bias. It achieves an RMSE of 368.3, R of 0.909, CE of 0.872, PI of 0.015, WI of 0.921, and LMI of 0.083. During the testing period, the RF algorithm demonstrates a slight negative bias with a PBIAS of  − 0.06. The RMSE reduces significantly to 24.1, indicating improved accuracy. The algorithm maintains a high correlation (R = 0.903) and a good coefficient of efficiency (CE = 0.878). The index of agreement (PI) increases to 0.035, suggesting a better fit. The WI is 0.960, indicating high accuracy compared to the mean value, while the LMI decreases slightly to − 0.038. Based on the comparative results of the machine learning algorithms, it was concluded that RF performed better than DT, CANFIS, and MLP. The study recommended using the current month’s total hardness (TH), magnesium (Mg), and chloride (Cl) parameters as input variables for multi-ahead forecasting of electrical conductivity (ECt+1, ECt+2, and ECt+3) in future studies in the Upper Ganga basin. The findings also indicated that RF and DT models had superior performance compared to MLP and CANFIS models. These models can be applied for multi-ahead forecasting of monthly electrical conductivity at both Varanasi and Prayagraj stations in the Upper Ganga basin.
  •  
5.
  • Gururani, Dheeraj Mohan, et al. (författare)
  • Mapping Prospects for Artificial Groundwater Recharge Utilizing Remote Sensing and GIS Methods
  • 2023
  • Ingår i: Water. - : MDPI. - 2073-4441. ; 15:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The indiscriminate use of groundwater and its overexploitation has led to a significant decline in groundwater resources in India, making it essential to identify potential recharge zones for aquifer recharge. A study was conducted to determine such potential recharge zones in the Nandhour-Kailash River watershed. The study area included 1481 streams divided into 12 sub-basins (SWS). The results show that the downstream Saraunj sub-basins (SWS-11) and Odra sub-basins (SWS-12) were high priority and required immediate soil and water conservation attention. Sub catchments Lobchla West (SWS-4), Deotar (SWS-5), Balot South (SWS-8), Nandhour (SWS-9), and Nakoliy (SWS-10) had medium priority and were designated for moderate soil erosion and degradation. In contrast, sub-catchments Aligad (SWS-1), Kundal (SWS-2), Lowarnala North (SWS-3), Bhalseni (SWS-6), and Uparla Gauniyarao (SWS-7) had low priority, indicating a low risk of soil erosion and degradation. Using the existing groundwater level data, the potential map of groundwater was validated to confirm its validity. According to the guidelines provided by the Integrated Mission for Sustainable Development (IMSD), the results of the groundwater potential zones for good to very good zones have been integrated at the slope and stream order. In a 120.94 km2 area with a slope of 0–5% in first-order streams, 36 ponds were proposed, and in a 218.03 km2 area with a slope of 15% in first- to fourth-order streams, 105 retention dams were proposed and recognized as possible sites for artificial groundwater recharge. The proposed water harvesting structure may aid in continuously recharging these zones and benefit water resource managers and planners. Thus, various governmental organizations can use the results to identify possible future recharge areas.
  •  
6.
  • Joshi, Bhupendra, et al. (författare)
  • A comparative survey between cascade correlation neural network (CCNN) and feedforward neural network (FFNN) machine learning models for forecasting suspended sediment concentration
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspended sediment concentration prediction is critical for the design of reservoirs, dams, rivers ecosystems, various operations of aquatic resource structure, environmental safety, and water management. In this study, two different machine models, namely the cascade correlation neural network (CCNN) and feedforward neural network (FFNN) were applied to predict daily-suspended sediment concentration (SSC) at Simga and Jondhara stations in Sheonath basin, India. Daily-suspended sediment concentration and discharge data from 2010 to 2015 were collected and used to develop the model to predict suspended sediment concentration. The developed models were evaluated using statistical indices like Nash and Sutcliffe efficiency coefficient (NES), root mean square error (RMSE), Willmott’s index of agreement (WI), and Legates–McCabe’s index (LM), supplemented by a scatter plot, density plots, histograms and Taylor diagram for graphical representation. The developed model was evaluated and compared with CCNN and FFNN. Nine input combinations were explored using different lag-times for discharge (Qt-n) and suspended sediment concentration (St-n) as input variables, with the current suspended sediment concentration as the desired output, to develop CCNN and FFNN models. The CCNN4 model with 4 lagged inputs (St-1, St-2, St-3, St-4) outperformed the other developed models with the lowest RMSE = 95.02 mg/l and the highest NES = 0.0.662, WI = 0.890 and LM = 0.668 for the Jondhara Station while the same CCNN4 model secure as the best with the lowest RMSE = 53.71 mg/l and the highest NES = 0.785, WI = 0.936 and LM = 0.788 for the Simga Station. The result shows the CCNN model was better than the FFNN model for predicting daily-suspended sediment at both stations in the Sheonath basin, India. Overall, CCNN showed better forecasting potential for suspended sediment concentration compared to FFNN at both stations, demonstrating their applicability for hydrological forecasting with complex relationships.
  •  
7.
  • Kumar Singh, Abhinav, et al. (författare)
  • An Integrated Statistical-Machine Learning Approach for Runoff Prediction
  • 2022
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays, great attention has been attributed to the study of runoff and its fluctuation over space and time. There is a crucial need for a good soil and water management system to overcome the challenges of water scarcity and other natural adverse events like floods and landslides, among others. Rainfall–runoff (R-R) modeling is an appropriate approach for runoff prediction, making it possible to take preventive measures to avoid damage caused by natural hazards such as floods. In the present study, several data-driven models, namely, multiple linear regression (MLR), multiple adaptive regression splines (MARS), support vector machine (SVM), and random forest (RF), were used for rainfall–runoff prediction of the Gola watershed, located in the south-eastern part of the Uttarakhand. The rainfall–runoff model analysis was conducted using daily rainfall and runoff data for 12 years (2009 to 2020) of the Gola watershed. The first 80% of the complete data was used to train the model, and the remaining 20% was used for the testing period. The performance of the models was evaluated based on the coefficient of determination (R2), root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), and percent bias (PBAIS) indices. In addition to the numerical comparison, the models were evaluated. Their performances were evaluated based on graphical plotting, i.e., time-series line diagram, scatter plot, violin plot, relative error plot, and Taylor diagram (TD). The comparison results revealed that the four heuristic methods gave higher accuracy than the MLR model. Among the machine learning models, the RF (RMSE (m3/s), R2, NSE, and PBIAS (%) = 6.31, 0.96, 0.94, and −0.20 during the training period, respectively, and 5.53, 0.95, 0.92, and −0.20 during the testing period, respectively) surpassed the MARS, SVM, and the MLR models in forecasting daily runoff for all cases studied. The RF model outperformed in all four models’ training and testing periods. It can be summarized that the RF model is best-in-class and delivers a strong potential for the runoff prediction of the Gola watershed.
  •  
8.
  • Sagar, Atish, et al. (författare)
  • Development of Smart Weighing Lysimeter for Measuring Evapotranspiration and Developing Crop Coefficient for Greenhouse Chrysanthemum
  • 2022
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 22:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The management of water resources is a priority problem in agriculture, especially in areas with a limited water supply. The determination of crop water requirements and crop coefficient (Kc) of agricultural crops helps to create an appropriate irrigation schedule for the effective management of irrigation water. A portable smart weighing lysimeter (1000 × 1000 mm and 600 mm depth) was developed at CPCT, IARI, New Delhi for real-time measurement of Crop Coefficient (Kc) and water requirement of chrysanthemum crop and bulk data storage. The paper discusses the assembly, structural and operational design of the portable smart weighting lysimeter. The performance characteristics of the developed lysimeter were evaluated under different load conditions. The Kc values of the chrysanthemum crop obtained from the lysimeter installed inside the greenhouse were Kc ini. 0.43 and 0.38, Kc mid-1.27 and 1.25, and Kc end-0.67 and 0.59 for the years 2019–2020 and 2020–2021, respectively, which apprehensively corroborated with the FAO 56 paper for determination of crop coefficient. The Kc values decreased progressively at the late-season stage because of the maturity and aging of the leaves. The lysimeter’s edge temperature was somewhat higher, whereas the center temperature closely matched the field temperature. The temperature difference between the center and the edge increased as the ambient temperature rose. The developed smart lysimeter system has unique applications due to its real-time measurement, portable attribute, and ability to produce accurate results for determining crop water use and crop coefficient for greenhouse chrysanthemum crops.
  •  
9.
  • Vishwakarma, Dinesh Kumar, et al. (författare)
  • Modeling of soil moisture movement and wetting behavior under point-source trickle irrigation
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The design and selection of ideal emitter discharge rates can be aided by accurate information regarding the wetted soil pattern under surface drip irrigation. The current field investigation was conducted in an apple orchard in SKUAST- Kashmir, Jammu and Kashmir, a Union Territory of India, during 2017–2019. The objective of the experiment was to examine the movement of moisture over time and assess the extent of wetting in both horizontal and vertical directions under point source drip irrigation with discharge rates of 2, 4, and 8 L h−1. At 30, 60, and 120 min since the beginning of irrigation, a soil pit was dug across the length of the wetted area on the surface in order to measure the wetting pattern. For measuring the soil moisture movement and wetted soil width and depth, three replicas of soil samples were collected according to the treatment and the average value were considered. As a result, 54 different experiments were conducted, resulting in the digging of pits [3 emitter discharge rates × 3 application times × 3 replications × 2 (after application and 24 after application)]. This study utilized the Drip-Irriwater model to evaluate and validate the accuracy of predictions of wetting fronts and soil moisture dynamics in both orientations. Results showed that the modeled values were very close to the actual field values, with a mean absolute error of 0.018, a mean bias error of 0.0005, a mean absolute percentage error of 7.3, a root mean square error of 0.023, a Pearson coefficient of 0.951, a coefficient of correlation of 0.918, and a Nash–Sutcliffe model efficiency coefficient of 0.887. The wetted width just after irrigation was measured at 14.65, 16.65, and 20.62 cm; 16.20, 20.25, and 23.90 cm; and 20.00, 24.50, and 28.81 cm in 2, 4, and 8 L h−1, at 30, 60, and 120 min, respectively, while the wetted depth was observed 13.10, 16.20, and 20.44 cm; 15.10, 21.50, and 26.00 cm; 19.40, 25.00, and 31.00 cm, respectively. As the flow rate from the emitter increased, the amount of moisture dissemination grew (both immediately and 24 h after irrigation). The soil moisture contents were observed 0.4300, 0.3808, 0.2298, 0.1604, and 0.1600 cm3 cm−3 just after irrigation in 2 L h−1 while 0.4300, 0.3841, 0.2385, 0.1607, and 0.1600 cm3 cm−3 were in 4 L h−1 and 0.4300, 0.3852, 0.2417, 0.1608, and 0.1600 cm3 cm−3 were in 8 L h−1 at 5, 10, 15, 20, and 25 cm soil depth in 30 min of application time. Similar distinct increments were found in 60, and 120 min of irrigation. The findings suggest that this simple model, which only requires soil, irrigation, and simulation parameters, is a valuable and practical tool for irrigation design. It provides information on soil wetting patterns and soil moisture distribution under a single emitter, which is important for effectively planning and designing a drip irrigation system. Investigating soil wetting patterns and moisture redistribution in the soil profile under point source drip irrigation helps promote efficient planning and design of a drip irrigation system.
  •  
10.
  • Gupta, Sanjeev, et al. (författare)
  • Sensitivity of daily reference evapotranspiration to weather variables in tropical savanna: a modelling framework based on neural network
  • 2024
  • Ingår i: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of reference evapotranspiration (ETo) is crucial for many water-related fields, including crop modelling, hydrologic simulations, irrigation scheduling and sustainable water management. This study compares the performance of different soft computing models such as artificial neural network (ANN), wavelet-coupled ANN (WANN), adaptive neuro-fuzzy inference systems (ANFIS) and multiple nonlinear regression (MNLR) for predicting ETo. The Gamma test technique was adopted to select the suitable input combination of meteorological variables. The performance of the models was quantitatively and qualitatively evaluated using several statistical criteria. The study showed that the ANN-10 model performed superior to the ANFIS-06, WANN-11 and MNLR models. The proposed ANN-10 model was more appropriate and efficient than the ANFIS-06, WANN-11 and MNLR models for predicting daily ETo. Solar radiation was found to be the most sensitive input variable. In contrast, actual vapour pressure was the least sensitive parameter based on sensitivity analysis. 
  •  
11.
  • Jat, Rajkumar, et al. (författare)
  • Deficit irrigation scheduling with mulching and yield prediction of guava (Psidium guajava L.) in a subtropical humid region
  • 2022
  • Ingår i: Frontiers in Environmental Science. - : Frontiers Media S.A.. - 2296-665X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Drip irrigation and mulching are often used to alleviate the problem of poor water management in many crops; however, these technologies have not yet been tested for applying water at critical stages of guava orchard growth in subtropical humid Tarai regions of India to improve the yield and quality. A field experiment was conducted over 2020 and 2021 which included three irrigation strategies: severe deficit irrigation (DI50), moderate deficit irrigation (DI75), and full irrigation (FI100), as well as four mulching methods: silver-black mulch (M-SB), black mulch (M-B), organic mulch (M-OM), and a control without mulch (M-WM). The results showed that both the relative leaf water content (RLWC) and the proline content exhibited an increasing trend with a decrease in the irrigation regime, resulting in a 123% increase in the proline content under DI50 conditions compared with FI100, while greater plant growth was recorded in fully irrigated plants and using silver-black mulch. Leaf nutrient analysis showed that FI100 and M-OM produced significantly higher concentrations of all nutrients. However, moderate deficit irrigation (DI75) along with silver-black mulch (M-SB) produced higher numbers of fruits per plant, higher average fruit weights, higher fruit yields, and maximum ascorbic acid contents. The irrigation water productivity (IWP) decreased with an increase in the irrigation regime; from severe water deficit to full irrigation, resulting in a 33.79% improvement in IWP under DI50 conditions as compared with FI100. Regression analysis outperforms principal component regression analysis for fruit yield prediction, with adjusted R-2 = 89.80%, RMSE = 1.91, MAE = 1.52, and MAPE = 3.83. The most important traits affecting the fruit yield of guava, based on stepwise regression, were leaf proline, leaf Cu, fruit weight, and IWP.
  •  
12.
  • Kishore, Gottam, et al. (författare)
  • Magnetic treatment of irrigation water and its effect on French bean (Phaseolus vulgaris)
  • 2023
  • Ingår i: Water Reuse. - : IWA Publishing. - 2709-6092 .- 2709-6106. ; 13:4, s. 545-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic water treatment (magnetic treatment device (MTD)) has long been a contentious procedure for domestic water treatment. This study examines the pros and cons of using different water types with and without a magnetic field treatment for growing French bean crop irrigation. The MTD used in this experiment works by ionizing the dissolved solid using a cathode and anode, electrolysing water using a dynamic pulse current at 50 kHz, and energizing the cations using a 7,000 Gauss magnet. The MTD of normal waste and saline water enhanced the yield by 12.7, 16.9, and 20.07% over their respective control plots. Contrarily, seed protein (22.52 g/100 g), vitamin A (687.09 IU), potassium (212.44 mg/100 g), vitamin K (14.32 mg/100 g), and calcium (39.93 mg/100 g) reached their peak values when French bean plants were irrigated by magnetically treated wastewater. Na concentration in pods was significantly reduced when 3,000 mg/L of magnetically treated saline water was used to irrigate French bean plants. The MTD of irrigation water has also improved N and K desorption from colloidal soil complexes, which significantly helped in making these two elements easily available to the plants and promoting better plant growth and yield. Overall, using the MTD, the overall characteristics of French bean were improved.
  •  
13.
  • Kumar, Rohitashw, et al. (författare)
  • A review on emerging water contaminants and the application of sustainable removal technologies
  • 2022
  • Ingår i: Case Studies in Chemical and Environmental Engineering. - : Elsevier. - 2666-0164. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Emerging contaminants (ECs) are synthetic or naturally occurring chemicals or any microorganisms that are not commonly monitored in the environment but have the potential to enter the environment and cause known or suspected adverse ecological or human health effects. The issue of ECs persistent in the environment and can disrupt the physiology of target receptors, they are recognized as Contaminants of emerging environmental concerns. The prominent classes of ECs include pharmaceuticals and personal care products (PPCPs), plasticizers, surfactants, fire retardants, nanomaterials, and pesticides. Several ECs have been recognized as endocrine disruptive compounds (EDCs) due to their deleterious effects on endocrine systems (EDCs). The contaminants present in the aquatic environment resources are a major cause of concern for human health and the environment and safety concern. These contaminations have risen into a major threat to the water distribution system. The impact of emerging contaminants (ECs) such as medicines, x-ray media, endocrine disruptors, insecticides, and personal care items has been reported in surface water, wastewater, and groundwater sources worldwide in recent years. Various techniques have been explored for ECs degradation and removal to mitigate their harmful effect. Numerous prior or continuing investigations have focused on the degradation and removal of contaminants using a variety of treatment techniques, including (1) physical, (2) chemical, and (3) biological. However, experimental data is insufficient to provide precise predictions regarding the mechanistic degradation and removal fate of ECs across various in-practice systems. The membrane technology can remove particles as fine as 10 μm and colloidal particles, It can be effectively eliminated by up to 99% through the use of MBR and treatment technologies such as reverse osmosis, ultrafiltration, or nanofiltration at concentrations up to 5 g/liter. In this paper, the emerging contaminants overview, their sources, and their removal by application of various treatments based on recent studies have been presented.
  •  
14.
  • Kumar, Rohitashw, et al. (författare)
  • Assessment of Climate Change Impact on Snowmelt Runoff in Himalayan Region
  • 2022
  • Ingår i: Sustainability. - : MDPI. - 2071-1050. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Under different climate change scenarios, the current study was planned to simulate runoff due to snowmelt in the Lidder River catchment in the Himalayan region. A basic degree-day model, the Snowmelt-Runoff Model (SRM), was utilized to assess the hydrological consequences of change in the climate. The performance of the SRM model during calibration and validation was assessed using volume difference (Dv) and coefficient of determination (R2). The Dv was found to be 11.7, −10.1, −11.8, 1.96, and 8.6 in 2009–2014, respectively, while the respective R2 was 0.96, 0.92, 0.95, 0.90, and 0.94. The Dv and R2 values indicate that the simulated snowmelt runoff closely agrees with the observed values. The simulated findings were assessed under three different climate change scenarios: (a) an increase in precipitation by +20%, (b) a temperature rise of +2◦ C, and (c) a temperature rise of +2◦ C with a 20% increase in snow cover. In scenario (b), the simulated results showed that runoff increased by 53% in summer (April–September). In contrast, the projected increased discharge for scenarios (a) and (c) was 37% and 67%, respectively. The SRM efficiently forecasts future water supplies due to snowmelt runoff in high elevation, data-scarce mountain environments.
  •  
15.
  • Parvaze, Sabah, et al. (författare)
  • Optimization of Water Distribution Systems Using Genetic Algorithms: A Review
  • 2023
  • Ingår i: Archives of Computational Methods in Engineering. - : Springer. - 1134-3060 .- 1886-1784. ; 30, s. 4209-4244
  • Forskningsöversikt (refereegranskat)abstract
    • Water distribution networks are crucial for supplying consumers with quality and adequate water. A water distribution system comprises connected hydraulic components which ensure water supply and distribution to meet demand. Optimization of water distribution networks is carried out to minimize resource utilization and expenditure or maximize the system’s efficiency and higher benefits. Genetic algorithms signify an effective search technique for non-linear optimization problems and have gained acceptance among water resources planners and managers. This paper reviews various developments in the optimization of water distribution systems using the technique of genetic algorithms. These developments are pertinent to creating novel systems for distributing water and the expansion, reinforcement, and rehabilitation process for prevailing water supply mechanisms.
  •  
16.
  • Saroughi, Mohsen, et al. (författare)
  • Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar Plain, Iran)
  • 2024
  • Ingår i: Heliyon. - : Elsevier Ltd. - 2405-8440. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The estimation of groundwater levels is crucial and an important step in ensuring sustainable management of water resources. In this paper, selected piezometers of the Hamedan-Bahar plain located in west of Iran. The main objective of this study is to compare effect of various pre-processing methods on input data for different artificial intelligence (AI) models to predict groundwater levels (GWLs). The observed GWL, evaporation, precipitation, and temperature were used as input variables in the AI algorithms. Firstly, 126 method of data pre-processing was done by python programming which are classified into three classes: 1- statistical methods, 2- wavelet transform methods and 3- decomposition methods; later, various pre-processed data used by four types of widely used AI models with different kernels, which includes: Support Vector Machine (SVR), Artificial Neural Network (ANN), Long-Short Term memory (LSTM), and Pelican Optimization Algorithm (POA) - Artificial Neural Network (POA-ANN) are classified into three classes: 1- machine learning (SVR and ANN), 2- deep learning (LSTM) and 3- hybrid-ML (POA-ANN) models, to predict groundwater levels (GWLs). Akaike Information Criterion (AIC) were used to evaluate and validate the predictive accuracy of algorithms. According to the results, based on summation (train and test phases) of AIC value of 1778 models, average of AIC values for ML, DL, hybrid-ML classes, was decreased to −25.3%, −29.6% and −57.8%, respectively. Therefore, the results showed that all data pre-processing methods do not lead to improvement of prediction accuracy, and they should be selected very carefully by trial and error. In conclusion, wavelet-ANN model with daubechies 13 and 25 neurons (db13_ANN_25) is the best model to predict GWL that has −204.9 value for AIC which has grown by 5.23% (−194.7) compared to the state without any pre-processing method (ANN_Relu_25).
  •  
17.
  • Sharma, Vipasha, et al. (författare)
  • Spatial Variation and Relation of Aerosol Optical Depth with LULC and Spectral Indices
  • 2022
  • Ingår i: Atmosphere. - : Mdpi. - 2073-4433. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current study area (Faridabad, Gurugram, Ghaziabad, and Gautam Buddha Nagar), the aerosol concentration is very high, adversely affecting the environmental conditions and air quality. Investigating the impact of Land Use Land Cover (LULC) on Aerosol Optical Depth (AOD) helps us to develop effective solutions for improving air quality. Hence, the spectral indices derived from LULC ((Normalized difference vegetation index (NDVI), Soil adjusted vegetation index (SAVI), Enhanced vegetation index (EVI), and Normalized difference build-up index (NDBI)) with Moderate Resolution Imaging Spectroradiometer (MODIS) Multiangle Implementation of Atmospheric Correction (MAIAC) high spatial resolution (1 km) AOD from the years 2010-2019 (less to high urbanized period) has been correlated. The current study used remote sensing and Geographical Information System (GIS) techniques to examine changes in LULC in the current study region over the ten years (2010-2019) and the relationship between LULC and AOD. A significant increase in built-up areas (12.18%) and grasslands (51.29%) was observed during 2010-2019, while cropland decreased by 4.42%. A positive correlation between NDBI and SAVI (0.35, 0.27) indicates that built-up soils play an important role in accumulating AOD in a semi-arid region. At the same time, a negative correlation between NDVI and EVI (-0.24, -0.15) indicates the removal of aerosols due to an increase in vegetation. The results indicate that SAVI can play an important role in PM2.5 modeling in semi-arid regions. Based on these findings, urban planners can improve land use management, air quality, and urban planning.
  •  
18.
  • Vishwakarma, Dinesh Kumar, et al. (författare)
  • Forecasting of stage-discharge in a non-perennial river using machine learning with gamma test
  • 2023
  • Ingår i: Heliyon. - : Elsevier. - 2405-8440. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the stage-discharge rating curve is useful in designing and planning flood warnings; thus, developing a reliable stage-discharge rating curve is a fundamental and crucial component of water resource system engineering. Since the continuous measurement is often impossible, the stage-discharge relationship is generally used in natural streams to estimate discharge. This paper aims to optimize the rating curve using a generalized reduced gradient (GRG) solver and the test the accuracy and applicability of the hybridized linear regression (LR) with other machine learning techniques, namely, linear regression-random subspace (LR-RSS), linear regression-reduced error pruning tree (LR-REPTree), linear regression-support vector machine (LR-SVM) and linear regression-M5 pruned (LR-M5P) models. An application of these hybrid models was performed and test to modeling the Gaula Barrage stage-discharge problem. For this, 12-year historical stage-discharge data were collected and analyzed. The 12-year historical daily flow data (m3/s) and stage (m) from during the monsoon season, i.e., June to October only from 03/06/2007 to 31/10/2018, were used for discharge simulation. The best suitable combination of input variables for LR, LR-RSS, LR-REPTree, LR-SVM, and LR-M5P models was identified and decided using the gamma test. GRG-based rating curve equations were found to be as effective and more accurate as conventional rating curve equations. The outcomes from GRG, LR, LR-RSS, LR-REPTree, LR-SVM, and LR-M5P models were compared to observed values of daily discharge based on Nash Sutcliffe model efficiency coefficient (NSE), Willmott Index of Agreement (d), Kling-Gupta efficiency (KGE), mean absolute error (MAE), mean bias error (MBE), relative bias in percent (RE), root mean square error (RMSE) Pearson correlation coefficient (PCC) and coefficient of determination (R2). The LR-REPTree model (combination 1: NSE = 0.993, d = 0.998, KGE = 0.987, PCC(r) = 0.997, and R2 = 0.994 and minimum value of RMSE = 0.109, MAE = 0.041, MBE = −0.010 and RE = −0.1%; combination 2; NSE = 0.941, d = 0.984, KGE = 0. 923, PCC(r) = 0. 973, and R2 = 0. 947 and minimum value of RMSE = 0. 331, MAE = 0.143, MBE = −0.089 and RE = −0.9%) performed superior to the GRG, LR, LR-RSS, LR-SVM, and LR-M5P models in all input combinations during the testing period. It was also noticed that the performance of the alone LR and its hybrid models (i.e., LR-RSS, LR-REPTree, LR-SVM, and LR-M5P) was better than the conventional stage-discharge rating curve, including the GRG method.
  •  
19.
  • Elbeltagi, Ahmed, et al. (författare)
  • Data intelligence and hybrid metaheuristic algorithms-based estimation of reference evapotranspiration
  • 2022
  • Ingår i: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • For developing countries, scarcity of climatic data is the biggest challenge, and model development with limited meteorological input is of critical importance. In this study, five data intelligent and hybrid metaheuristic machine learning algorithms, namely additive regression (AR), AR-bagging, AR-random subspace (AR-RSS), AR-M5P, and AR-REPTree, were applied to predict monthly mean daily reference evapotranspiration (ET0). For this purpose, climatic data of two meteorological stations located in the semi-arid region of Pakistan were used from the period 1987 to 2016. The climatic dataset includes maximum and minimum temperature (Tmax, Tmin), average relative humidity (RHavg), average wind speed (Ux), and sunshine hours (n). Sensitivity analysis through regression methods was applied to determine effective input climatic parameters for ET0 modeling. The results of performed regression analysis on all input parameters proved that Tmin, RHAvg, Ux, and n were identified as the most influential input parameters at the studied station. From the results, it was revealed that all the selected models predicted ET0 at both stations with greater precision. The AR-REPTree model was located furthest and the AR-M5P model was located nearest to the observed point based on the performing indices at both the selected meteorological stations. The study concluded that under the aforementioned methodological framework, the AR-M5P model can yield higher accuracy in predicting ET0 values, as compared to other selected algorithms.
  •  
20.
  • Elbeltagi, Ahmed, et al. (författare)
  • Forecasting monthly pan evaporation using hybrid additive regression and data-driven models in a semi-arid environment
  • 2023
  • Ingår i: Applied water science. - : Springer. - 2190-5487 .- 2190-5495. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Exact estimation of evaporation rates is very important in a proper planning and efficient operation of water resources projects and agricultural activities. Evaporation is affected by many driving forces characterized by nonlinearity, non-stationary, and stochasticity. Such factors clearly hinder setting up rigorous predictive models. This study evaluates the predictability of coupling the additive regression model (AR) with four ensemble machine-learning algorithms—random Subspace (RSS), M5 pruned (M5P), reduced error pruning tree (REPTree), and bagging for estimating pan evaporation rates. Meteorological data encompass maximum temperature, minimum temperature, mean temperature, relative humidity, and wind speed from three different agroclimatic stations in Iraq (i.e., Baghdad, Mosul, and Basrah) were utilized as predictor parameters. The regression model in addition to the sensitivity analysis was employed to identify the best-input combinations for the evaluated methods. It was demonstrated that the AR-M5P estimated the evaporation with higher accuracy than others when combining wind speed, relative humidity, and the minimum and mean temperatures as input parameters. The AR-M5P model provided the best performance indicators, i.e., MAE = 33.82, RMSE = 45.05, RAE = 24.75, RRSE = 28.50, and r = 0.972 for Baghdad; MAE = 25.82, RMSE = 35.95, RAE = 23.75, RRSE = 29.64, and r = 0.956 for Mosul station, respectively. The outcomes of this study proved the superior performance of the hybridized methods in addressing such intricate hydrological relationships and hence could be employed for other environmental problems.
  •  
21.
  • Heddam, Salim, et al. (författare)
  • Hybrid river stage forecasting based on machine learning with empirical mode decomposition
  • 2024
  • Ingår i: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The river stage is certainly an important indicator of how the water level fluctuates overtime. Continuous control of the water stage can help build an early warning indicator of floods along rivers and streams. Hence, forecasting river stages up to several days in advance is very important and constitutes a challenging task. Over the past few decades, the use of machine learning paradigm to investigate complex hydrological systems has gained significant importance, and forecasting river stage is one of the promising areas of investigations. Traditional in situ measurements, which are sometime restricted by the existing of several handicaps especially in terms of regular access to any points alongside the streams and rivers, can be overpassed by the use of modeling approaches. For more accurate forecasting of river stages, we suggest a new modeling framework based on machine learning. A hybrid forecasting approach was developed by combining machine learning techniques, namely random forest regression (RFR), bootstrap aggregating (Bagging), adaptive boosting (AdaBoost), and artificial neural network (ANN), with empirical mode decomposition (EMD) to provide a robust forecasting model. The singles models were first applied using only the river stage data without preprocessing, and in the following step, the data were decomposed into several intrinsic mode functions (IMF), which were then used as new input variables. According to the obtained results, the proposed models showed improved results compared to the standard RFR without EMD for which, the error performances metrics were drastically reduced, and the correlation index was increased remarkably and great changes in models’ performances have taken place. The RFR_EMD, Bagging_EMD, and AdaBoost_EMD were less accurate than the ANN_EMD model, which had higher R≈0.974, NSE≈0.949, RMSE≈0.330 and MAE≈0.175 values. While the RFR_EMD and the Bagging_EMD were relatively equal and exhibited the same accuracies higher than the AdaBoost_EMD, the superiority of the ANN_EMD was obvious. The proposed model shows the potential for combining signal decomposition with machine learning, which can serve as a basis for new insights into river stage forecasting.
  •  
22.
  • Ramulu, Chelpuri, et al. (författare)
  • A residue management machine for chopping paddy residues in combine harvested paddy field
  • 2023
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays, Combine Harvesters are the most commonly used device for harvesting crops; as a result, a large amount of plant material and crop residue is concentrated into a narrow band of plant material that exits the combine, challenging the residue management task. This paper aims to develop a crop residue management machine that can chop paddy residues and mix them with the soil of the combined harvested paddy field. For this purpose, two important units are attached to the developed machine: the chopping and incorporation units. The tractor operates this machine as the main source, with a power range of about 55.95 kW. The four independent parameters selected for the study were rotary speed (R1 = 900 & R2 = 1100 rpm), forward speed (F1 = 2.1 & F2 = 3.0 Kmph), horizontal adjustment (H1 = 550 & H2 = 650 mm), and vertical adjustment (V1 = 100 & V2 = 200 mm) between the straw chopper shaft and rotavator shaft and its effect was found on incorporation efficiency, shredding efficiency, and trash size reduction of chopped paddy residues. The incorporation of residue and shredding efficiency was highest at V1H2F1R2 (95.31%) and V1H2F1R2 (61.92%) arrangements. The trash reduction of chopped paddy residue was recorded maximum at V1H2F2R2 (40.58%). Therefore, this study concludes that the developed residue management machine with some modifications in power transmission can be suggested to the farmers to overcome the paddy residue issue in combined harvested paddy fields.
  •  
23.
  • Raza, Ali, et al. (författare)
  • Misconceptions of Reference and Potential Evapotranspiration: A PRISMA-Guided Comprehensive Review
  • 2022
  • Ingår i: Hydrology. - : MDPI. - 2306-5338. ; 9:9
  • Forskningsöversikt (refereegranskat)abstract
    • One of the most important parts of the hydrological cycle is evapotranspiration (ET). Accurate estimates of ET in irrigated regions are critical to the planning, control, and regulation of agricultural natural resources. Accurate ET estimation is necessary for agricultural irrigation scheduling. ET is a nonlinear and complex process that cannot be calculated directly. Reference evapotranspiration (RET) and potential evapotranspiration (PET) are two primary forms of ET. The ideas, equations, and application areas for PET and RET are different. These two terms have been confused and used interchangeably by researchers. Therefore, terminology clarification is necessary to ensure their proper use. The research indicates that PET and RET concepts have a long and distinguished history. Thornthwaite devised the original PET idea, and it has been used ever since, although with several improvements. The development of RET, although initially confused with that of PET, was formally defined as a standard method. In this study, the Preferred Reporting Item for Systematic reviews and Meta-Analysis (PRISMA) was used. Equations for RET estimation were retrieved from 44 research articles, and equations for PET estimation were collected from 26 studies. Both the PET and RET equations were divided into three distinct categories: temperature-based, radiation-based, and combination-based. The results show that, among temperature-based equations for PET, Thornthwaite's (1948) equation was mentioned in 12,117 publications, whereas among temperature-based equations for RET, Hargreaves and Samani's (1985) equation was quoted in 3859 studies. Similarly, Priestley (1972) had the most highly cited equation in radiation-based PET equations (about 6379), whereas Ritchie (1972) had the most highly cited RET equations (around 2382) in radiation-based equations. Additionally, among combination-based PET equations, Penman and Monteith's (1948) equations were cited in 9307 research studies, but the equations of Allen et al. (1998) were the subject of a significant number of citations from 23,000 publications. Based on application, PET is most often applied in the fields of hydrology, meteorology, and climatology, whereas RET is more frequently utilized in the fields of agronomy, agriculture, irrigation, and ecology. PET has been used to derive drought indices, whereas RET has been employed for single crop and dual crop coefficient approaches. This work examines and describes the ideas and methodologies, widely used equations, applications, and advanced approaches associated with PET and RET, and discusses future enhancements to increase the accuracy of ET calculation to attain accurate agricultural irrigation scheduling. The use of advanced tools such as remote sensing and satellite technologies, in addition to machine learning algorithms, will help to improve the accuracy of PET and RET estimates. Researchers will be able to distinguish between PET and RET in the future with the use of the study's results.
  •  
24.
  • Raza, Ali, et al. (författare)
  • Use of gene expression programming to predict reference evapotranspiration in different climatic conditions
  • 2024
  • Ingår i: Applied water science. - : Springer Nature. - 2190-5487 .- 2190-5495. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Evapotranspiration plays a pivotal role in the hydrological cycle. It is essential to develop an accurate computational model for predicting reference evapotranspiration (RET) for agricultural and hydrological applications, especially for the management of irrigation systems, allocation of water resources, assessments of utilization and demand and water use allocations in rural and urban areas. The limitation of climatic data to estimate RET restricted the use of standard Penman–Monteith method recommended by food and agriculture organization (FAO-PM56). Therefore, the current study used climatic data such as minimum, maximum and mean air temperature (Tmax, Tmin, Tmean), mean relative humidity (RHmean), wind speed (U) and sunshine hours (N) to predict RET using gene expression programming (GEP) technique. In this study, a total of 17 different input meteorological combinations were used to develop RET models. The obtained results of each GEP model are compared with FAO-PM56 to evaluate its performance in both training and testing periods. The GEP-13 model (Tmax, Tmin, RHmean, U) showed the lowest errors (RMSE, MAE) and highest efficiencies (R2, NSE) in semi-arid (Faisalabad and Peshawar) and humid (Skardu) conditions while GEP-11 and GEP-12 perform best in arid (Multan, Jacobabad) conditions during training period. However, GEP-11 in Multan and Jacobabad, GEP-7 in Faisalabad, GEP-1 in Peshawar, GEP-13 in Islamabad and Skardu outperformed in testing  period. In testing phase, the GEP models R2 values reach 0.99, RMSE values ranged from 0.27 to 2.65, MAE values from 0.21 to 1.85 and NSE values from 0.18 to 0.99. The study findings indicate that GEP is effective in predicting RET when there are minimal climatic data. Additionally, the mean relative humidity was identified as the most relevant factor across all climatic conditions. The findings of this study may be used to the planning and management of water resources in practical situations, as they demonstrate the impact of input variables on the RET associated with different climatic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy