SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wethers Clare 1991) "

Search: WFRF:(Wethers Clare 1991)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aalto, Susanne, 1964, et al. (author)
  • OH megamaser emission in the outflow of the luminous infrared galaxy Zw049.057
  • 2022
  • In: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 18, s. 40-44
  • Conference paper (peer-reviewed)abstract
    • High resolution (0.”26 × 0.”13 (70 × 35 pc)) L-band (18 cm) OH megamaser (OHM) e-Merlin observations of the LIRG Zw049.057 show that the emission is emerging from a low velocity outflowing structure - which is foreground to a fast, dense and collimated molecular outflow detected by ALMA. The extremely dusty compact obscured nucleus (CON) of Zw049.057 has no (or only little) OHM emission associated with it - possibly because of too high number densities that quench the OHM. In contrast we detect 6 cm H2CO emission primarily from the CON-region. We suggest that the OHM-region of Zw049.057 is not directly associated with star formation, but instead occurs in a wide-angle, slow outflow that surrounds the fast and dense outflow. The OHM is pumped by IR emission that likely stems from activities in the nucleus. We briefly discuss how OHM emission can be used as a probe of LIRG-CON galaxies.
  •  
2.
  • Gorski, Mark, 1989, et al. (author)
  • A spectacular galactic scale magnetohydrodynamic powered wind in ESO 320-G030
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 684
  • Journal article (peer-reviewed)abstract
    • How galaxies regulate nuclear growth through gas accretion by supermassive black holes (SMBHs) is one of the most fundamental questions in galaxy evolution. One potential way to regulate nuclear growth is through a galactic wind that removes gas from the nucleus. It is unclear whether galactic winds are powered by jets, mechanical winds, radiation, or via magnetohydrodynamic (MHD) processes. Compact obscured nuclei represent a significant phase of galactic nuclear growth. These galaxies hide growing SMBHs or unusual starbursts in their very opaque, extremely compact (r < 100 pc) centres. They are found in approximately 30% of the luminous and ultra-luminous infrared galaxy population. Here, we present high-resolution ALMA observations (∼30 mas, ∼5 pc) of ground-state and vibrationally excited HCN towards ESO 320-G030 (IRAS 11506-3851). ESO 320-G030 is an isolated luminous infrared galaxy known to host a compact obscured nucleus and a kiloparsec-scale molecular wind. Our analysis of these high-resolution observations excludes the possibility of a starburst-driven wind, a mechanically or energy driven active galactic nucleus wind, and exposes a molecular MDH wind. These results imply that the nuclear evolution of galaxies and the growth of SMBHs are similar to the growth of hot cores or protostars where gravitational collapse of the nuclear torus drives a MHD wind. These results mean galaxies are capable, in part, of regulating the evolution of their nuclei without feedback.
  •  
3.
  • Gorski, Mark, 1989, et al. (author)
  • The opaque heart of the galaxy IC 860: Analogous protostellar, kinematics, morphology, and chemistry
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Journal article (peer-reviewed)abstract
    • Compact Obscured Nuclei (CONs) account for a significant fraction of the population of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These galaxy nuclei are compact, with radii of 10-100 pc, with large optical depths at submm and far-infrared wavelengths, and characterized by vibrationally excited HCN emission. It is not known what powers the large luminosities of the CON host galaxies because of the extreme optical depths towards their nuclei. CONs represent an extreme phase of nuclear growth, hiding either a rapidly accreting supermassive black hole or an abnormal mode of star formation. Regardless of their power source, the CONs allow us to investigate the processes of nuclear growth in galaxies. Here we apply principal component analysis (PCA) tomography to high-resolution (000:06) ALMA observations at frequencies 245 to 265 GHz of the nearby CON (59 Mpc) IC 860. PCA is a technique to unveil correlation in the data parameter space, and we apply it to explore the morphological and chemical properties of species in our dataset. The leading principal components reveal morphological features in molecular emission that suggest a rotating, infalling disk or envelope, and an outflow analogous to those seen in Galactic protostars. One particular molecule of astrochemical interest is methanimine (CH2NH), a precursor to glycine, three transitions of which have been detected towards IC 860.We estimate the average CH2NH column density towards the nucleus of IC 860 to be _1017cm2, with an abundance exceeding 108 relative to molecular hydrogen, using the rotation diagram method and non-LTE radiative transfer models. This CH2NH abundance is consistent with those found in hot cores of molecular clouds in the Milky Way. Our analysis suggests that CONs are an important stage of chemical evolution in galaxies, that are chemically and morphologically similar to Milky Way hot cores.
  •  
4.
  • Nishimura, Y., et al. (author)
  • CON-quest: II. Spatially and spectrally resolved HCN/HCO + line ratios in local luminous and ultraluminous infrared galaxies
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Journal article (peer-reviewed)abstract
    • Context. Nuclear regions of ultraluminous and luminous infrared galaxies (U/LIRGs) are powered by starbursts and/or active galactic nuclei (AGNs). These regions are often obscured by extremely high columns of gas and dust. Molecular lines in the submillimeter windows have the potential to determine the physical conditions of these compact obscured nuclei (CONs). Aims. We aim to reveal the distributions of HCN and HCO+ emission in local U/LIRGs and investigate whether and how they are related to galaxy properties. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted sensitive observations of the HCN J = 3-2 and HCO+J = 3-2 lines toward 23 U/LIRGs in the local Universe (z < 0.07) with a spatial resolution of ~0.3″ ( ~50-400 pc). Results. We detected both HCN and HCO+ in 21 galaxies, only HCN in one galaxy, and neither in one galaxy. The global HCN/HCO+ line ratios, averaged over scales of ~0.5-4 kpc, range from 0.4 to 2.3, with an unweighted mean of 1.1. These line ratios appear to have no systematic trend with bolometric AGN luminosity or star formation rate. The line ratio varies with position and velocity within each galaxy, with an average interquartile range of 0.38 on a spaxel-by-spaxel basis. In eight out of ten galaxies known to have outflows and/or inflows, we found spatially and kinematically symmetric structures of high line ratios. These structures appear as a collimated bicone in two galaxies and as a thin spherical shell in six galaxies. Conclusions. Non-LTE analysis suggests that the high HCN/HCO+ line ratio in outflows is predominantly influenced by the abundance ratio. Chemical model calculations indicate that the enhancement of HCN abundance in outflows is likely due to high-temperature chemistry triggered by shock heating. These results imply that the HCN/HCO+ line ratio can aid in identifying the outflow geometry when the shock velocity of the outflows is sufficiently high to heat the gas.
  •  
5.
  •  
6.
  • Wethers, Clare, 1991, et al. (author)
  • Double, double, toil, and trouble: The tails, bubbles, and knots of the local compact obscured nucleus galaxy NGC 4418
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • Context. Compact obscured nuclei (CONs) are an extremely obscured (NH2>1025 cm-2) class of galaxy nuclei thought to exist in 20-40 per cent of nearby (ultra-)luminous infrared galaxies While they have been proposed to represent a key phase of the active galactic nucleus (AGN) feedback cycle, the nature of these CONs -what powers them, their dynamics, and their impact on the host galaxy -remains unknown. Aims. This work analyses the galaxy-scale optical properties of the local CON NGC 4418 (z=0.00727). The key aims of the study are to understand the impact of nuclear outflows on the host galaxy and infer the power source of its CON. Through the mapping of the galaxy spectra and kinematics, we seek to identify new structures in NGC 4418 to ultimately reveal more about the CON's history, its impact on the host, and, more generally, the role CONs play in galaxy evolution. Methods. We present new, targeted integral field unit observations of the galaxy with the Multi-Unit Spectroscopic Explorer (MUSE). For the first time, we mapped the ionised and neutral gas components of the galaxy, along with their dynamical structure, to reveal several previously unknown features of the galaxy. Results. We confirm the presence of a previously postulated, blueshifted outflow along the minor axis of NGC 4418. We find this outflow to be decelerating and, for the first time, show it to extend in both directions from the nucleus. We report the discovery of two further outflow structures: a redshifted southern outflow connected to a tail of ionised gas surrounding the galaxy and a blueshifted bubble to the north. In addition to these features, we find the [OIII] emission reveals the presence of knots across the galaxy, which are consistent with regions of the galaxy that have been photoionised by an AGN. Conclusions. We identify several new features in NGC 4418, including a bubble structure, a reddened outflow, and [OIII] knot structures throughout the galaxy. We additionally confirm the presence of a bilateral blueshifted outflow along the minor axis. Based on the properties of these features, we conclude that the CON in NGC 4418 is most likely powered by AGN activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view