SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Williams Kevin Jon 1956) "

Search: WFRF:(Williams Kevin Jon 1956)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Borén, Jan, 1963, et al. (author)
  • The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity
  • 2016
  • In: Current Opinion in Lipidology. - : Ovid Technologies (Wolters Kluwer Health). - 0957-9672 .- 1473-6535. ; 27:5, s. 473-483
  • Journal article (peer-reviewed)abstract
    • Purpose of reviewToday, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall.Recent findingsNew clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis.SummaryLDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.
  •  
2.
  • Chen, K. Y., et al. (author)
  • Suppression of Hepatic FLOT1 (Flotillin-1) by Type 2 Diabetes Mellitus Impairs the Disposal of Remnant Lipoproteins via Syndecan-1
  • 2018
  • In: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 38:1, s. 102-113
  • Journal article (peer-reviewed)abstract
    • Objective Type 2 diabetes mellitus (T2DM) and the atherometabolic syndrome exhibit a deadly dyslipoproteinemia that arises in part from impaired hepatic disposal of C-TRLs (cholesterol- and triglyceride-rich remnant apoB [apolipoprotein B] lipoproteins). We previously identified syndecan-1 as a receptor for C-TRLs that directly mediates endocytosis via rafts, independent from coated pits. Caveolins and flotillins form rafts but facilitate distinct endocytotic pathways. We now investigated their participation in syndecan-1-mediated disposal of C-TRLs and their expression in T2DM liver. Approach and Results In cultured liver cells and nondiabetic murine livers, we found that syndecan-1 coimmunoprecipitates with FLOT1 (flotillin-1) but not with CAV1 (caveolin-1). Binding of C-TRLs to syndecan-1 on the surface of liver cells enhanced syndecan-1/FLOT1 association. The 2 molecules then trafficked together into the lysosomes, implying limited if any recycling back to the cell surface. The interaction requires the transmembrane/cytoplasmic region of syndecan-1 and the N-terminal hydrophobic domain of FLOT1. Knockdown of FLOT1 in cultured liver cells substantially inhibited syndecan-1 endocytosis. Livers from obese, T2DM KKA(y) mice exhibited 60% to 70% less FLOT1 protein and mRNA than in nondiabetic KK livers. An adenoviral construct to enhance hepatic expression of wild-type FLOT1 in T2DM mice normalized plasma triglycerides, whereas a mutant FLOT1 missing its N-terminal hydrophobic domain had no effect. Moreover, the adenoviral vector for wild-type FLOT1 lowered plasma triglyceride excursions and normalized retinyl excursions in T2DM KKA(y) mice after a corn oil gavage, without affecting postprandial production of C-TRLs. Conclusions FLOT1 is a novel participant in the disposal of harmful C-TRLs via syndecan-1. Low expression of FLOT1 in T2DM liver may contribute to metabolic dyslipoproteinemia.
  •  
3.
  • Chen, Y., et al. (author)
  • Translocation of Endogenous Danger Signal HMGB1 From Nucleus to Membrane Microvesicles in Macrophages
  • 2016
  • In: Journal of Cellular Physiology. - : Wiley. - 0021-9541 .- 1097-4652. ; 231:11, s. 2319-2326
  • Journal article (peer-reviewed)abstract
    • High mobility group box 1 (HMGB1) is a nuclear protein that can be released from activated or dead cells. Extracellular HMGB1 can serve as a “danger signal” and novel cytokine that mediates sterile inflammation. In addition to its soluble form, extracellular HMGB1 can also be carried by membrane microvesicles. However, the cellular mechanisms responsible for nuclear HMGB1 translocation to the plasma membrane and release onto membrane microvesicles have not been investigated. Tobacco smoking is a major cause of sterile inflammation in many diseases. Smoking also increases blood levels of HMGB1. In this study, we found that exposure of macrophages to tobacco smoke extract (TSE) stimulated HMGB1 expression, redistribution, and release into the extracellular milieu both as a soluble molecule and, surprisingly, as a microvesicle-associated form (TSE-MV). Inhibition of chromosome region maintenance-1 (CRM1), a nuclear exporter, attenuated TSE-induced HMGB1 redistribution from the nucleus to the cytoplasm, and then its release on TSE-MVs. Our study demonstrates a novel mechanism for the translocation of nuclear HMGB1 to the plasma membrane, and then its release in a microvesicle-associated form. J. Cell. Physiol. 231: 2319–2326, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
  •  
4.
  • Folkesson, M., et al. (author)
  • Proteolytically active ADAM10 and ADAM17 carried on membrane microvesicles in human abdominal aortic aneurysms
  • 2015
  • In: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 114:6, s. 1165-1174
  • Journal article (peer-reviewed)abstract
    • The intraluminal thrombus (ILT) of human abdominal aortic aneurysm (AAA) has been suggested to damage the underlying aortic wall, but previous work found scant activity of soluble proteases in the abluminal layer of the ILT, adjacent to the aneurysm. We hypothesised that transmembrane proteases carried by membrane microvesicles (MV) from dying cells remain active in the abluminal ILT. ILTs and AAA segments collected from 21 patients during surgical repair were assayed for two major transmembrane proteases, ADAM10 (a disintegrin and metalloprotease-10) and ADAM17. We also exposed cultured cells to tobacco smoke and assessed ADAM10 and ADAM17 expression and release on MVs. Immunohistochemistry showed abundant ADAM10 and ADAM17 protein in the ILT and underlying aneurysmal aorta. Domain-specific antibodies indicated both transmembrane and shed ADAM17. Importantly, ADAM10 and ADAM 17 in the abluminal ILT were enzymatically active. Electron microscopy of abluminal ILT and aortic wall showed MVs with ADAM10 and ADAM17. By flow cytometry, ADAM-positive microvesicles from abluminal ILT carried the neutrophil marker CD66, but not the platelet marker CD61. Cultured HL60 neutrophils exposed to tobacco smoke extract showed increased ADAM10 and ADAM17 content, cleavage of these molecules into active forms, and release of MVs carrying mature ADAM10 and detectable ADAM17. In conclusion, our results implicate persistent, enzymatically active ADAMs on MVs in the abluminal ILT, adjacent to the aneurysmal wall. The production of ADAM10- and ADAM17-positive MVs from smoke-exposed neutrophils provides a novel molecular mechanism for the vastly accelerated risk of AAA in smokers.
  •  
5.
  • Hassing, H. C., et al. (author)
  • SULF2 Strongly Prediposes to Fasting and Postprandial Triglycerides in Patients with Obesity and Type 2 Diabetes Mellitus
  • 2014
  • In: Obesity. - : Wiley. - 1930-7381 .- 1930-739X. ; 22:5, s. 1309-1316
  • Journal article (peer-reviewed)abstract
    • Objective: Hepatic overexpression of sulfatase-2 (SULF2), a heparan sulfate remodeling enzyme, strongly contributes to high triglyceride (TG) levels in obese, type 2 diabetic (T2DM) db/db mice. Nevertheless, data in humans are lacking. Here, the association of human hepatic SULF2 expression and SULF2 gene variants with TG metabolism in patients with obesity and/or T2DM was investigated. Methods: Liver biopsies from 121 obese subjects were analyzed for relations between hepatic SULF2 mRNA levels and plasma TG. Associations between seven SULF2 tagSNPs and TG levels were assessed in 210 obese T2DM subjects with dyslipidemia. Replication of positive findings was performed in 1,316 independent obese T2DM patients. Postprandial TRL clearance was evaluated in 29 obese T2DM subjects stratified by SULF2 genotype. Results: Liver SULF2 expression was significantly associated with fasting plasma TG (r = 0.271; P = 0.003) in obese subjects. The SULF2 rs2281279(A>G) SNP was reproducibly associated with lower fasting plasma TG levels in obese T2DM subjects (P < 0.05). Carriership of the minor G allele was associated with lower levels of postprandial plasma TG (P < 0.05) and retinyl esters levels (P < 0.001). Conclusions: These findings implicate SULF2 as potential therapeutic target in the atherogenic dyslipidemia of obesity and T2DM.
  •  
6.
  • Kraehling, J. R., et al. (author)
  • Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. © The Author(s) 2016.
  •  
7.
  • Li, M. Z., et al. (author)
  • Decreased secretion of adiponectin through its intracellular accumulation in adipose tissue during tobacco smoke exposure
  • 2015
  • In: Nutrition & Metabolism. - : Springer Science and Business Media LLC. - 1743-7075. ; 12
  • Journal article (peer-reviewed)abstract
    • Background: Cigarette smoking is associated with an increased risk of type 2 diabetes mellitus (T2DM). Smokers exhibit low circulating levels of total adiponectin (ADPN) and high-molecular-weight (HMW) ADPN multimers. Blood concentrations of HMW ADPN multimers closely correlate with insulin sensitivity for handling glucose. How tobacco smoke exposure lowers blood levels of ADPN, however, has not been investigated. In the current study, we examined the effects of tobacco smoke exposure in vitro and in vivo on the intracellular and extracellular distribution of ADPN and its HMW multimers, as well as potential mechanisms. Findings: We found that exposure of cultured adipocytes to tobacco smoke extract (TSE) suppressed total ADPN secretion, and TSE administration to mice lowered their plasma ADPN concentrations. Surprisingly, TSE caused intracellular accumulation of HMW ADPN in cultured adipocytes and in the adipose tissue of wild-type mice, while preferentially decreasing HMW ADPN in culture medium and in plasma. Importantly, we found that TSE up-regulated the ADPN retention chaperone ERp44, which colocalized with ADPN in the endoplasmic reticulum. In addition, TSE down-regulated DsbA-L, a factor for ADPN secretion. Conclusions: Tobacco smoke exposure traps HMW ADPN intracellularly, thereby blocking its secretion. Our results provide a novel mechanism for hypoadiponectinemia, and may help to explain the increased risk of T2DM in smokers.
  •  
8.
  • Mardinoglu, Adil, 1982, et al. (author)
  • An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans
  • 2018
  • In: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 27:3
  • Journal article (peer-reviewed)abstract
    • A carbohydrate-restricted diet is a widely recommended intervention for non-alcoholic fatty liver disease (NAFLD), but a systematic perspective on the multiple benefits of this diet is lacking. Here, we performed a short-term intervention with an isocaloric low-carbohydrate diet with increased protein content in obese subjects with NAFLD and characterized the resulting alterations in metabolism and the gut microbiota using a multi-omics approach. We observed rapid and dramatic reductions of liver fat and other cardiometabolic risk factors paralleled by (1) marked decreases in hepatic de novo lipogenesis; (2) large increases in serum beta-hydroxybutyrate concentrations, reflecting increased mitochondrial beta-oxidation; and (3) rapid increases in folate-producing Streptococcus and serum folate concentrations. Liver transcriptomic analysis on biopsy samples from a second cohort revealed downregulation of the fatty acid synthesis pathway and upregulation of folate-mediated one-carbon metabolism and fatty acid oxidation pathways. Our results highlight the potential of exploring diet-microbiota interactions for treating NAFLD.
  •  
9.
  • Tang, T., et al. (author)
  • Biglycan deficiency: Increased aortic aneurysm formation and lack of atheroprotection
  • 2014
  • In: Journal of Molecular and Cellular Cardiology. - : Elsevier BV. - 0022-2828. ; 75, s. 174-180
  • Journal article (peer-reviewed)abstract
    • Proteoglycans of the arterial wall play a critical role in vascular integrity and the development of atherosclerosis owing to their ability to organize extracellular matrix molecules and to hind and retain atherogenic apolipoprotein (apo)-B containing lipoproteins. Prior studies have suggested a role for biglycan in aneurysms and in atherosclerosis. Angiotensin II (angII) infusions into mice have been shown to induce abdominal aortic aneurysm development, increase vascular biglycan content, increase arterial retention of lipoproteins, and accelerate atherosclerosis. The goal of this study was to determine the role of biglycan in angII-induced vascular diseases. Biglycan-deficient or biglycan wildtype mice crossed to LDL receptor deficient (Ldlr-/-) mice (C57BL/6 background) were infused with angII (500 or 1000 ng/kg/min) or saline for 28 days while fed on normal chow, then pumps were removed, and mice were switched to an atherogenic Western diet for 6 weeks. During angII infusions, biglycan-deficient mice developed abdominal aortic aneurysms, unusual descending thoracic aneurysms, and a striking mortality caused by aortic rupture (76% for males and 48% for females at angII 1000 ng/kg/min). Histological analyses of non-aneurysmal aortic segments from biglycan-deficient mice revealed a deficiency of dense collagen fibers and the aneurysms demonstrated conspicuous elastin breaks. AngII infusion increased subsequent atherosclerotic lesion development in both biglycan-deficient and biglycan wildtype mice. However, the biglycan genotype did not affect the atherosclerotic lesion area induced by the Western diet after treatment with angII. Biglycan-deficient mice exhibited significantly increased vascular perlecan content compared to biglycan wildtype mice. Analyses of the atherosclerotic lesions demonstrated that vascular perlecan co-localized with apoB, suggesting that increased perlecan compensated for biglycan deficiency in terms of lipoprotein retention. Biglycan deficiency increases aortic aneurysm development and is not protective against the development of atherosclerosis. Biglycan deficiency leads to loosely packed aortic collagen fibers, increased susceptibility of aortic elastin fibers to angII-induced stress, and up-regulation of vascular perlecan content. Published by Elsevier Ltd.
  •  
10.
  • Williams, Kevin Jon, 1956, et al. (author)
  • Apolipoprotein-B: The Crucial Protein of Atherogenic Lipoproteins
  • 2015
  • In: Atherosclerosis: Risks, Mechanisms, and Therapies. Hong Wang, Cam Patterson (eds.). - Hoboken, NJ : Wiley Blackwell. - 9781118828533 ; , s. 291-312
  • Book chapter (other academic/artistic)abstract
    • This chapter focuses on cholesterol that is transported by apoB-containing lipoproteins, which become pathogenic only after their retention within the arterial wall. The four most commonly used methods to assess the concentrations of these particles in human plasma are total plasma cholesterol, assays of plasma low-density lipoprotein (LDL) itself, the calculation of non-high-density lipoprotein (HDL) cholesterol, and specific immunoassays for the apoB protein. The chapter covers several aspects of the key protein component, apoB, of atherogenic lipoproteins namely, the regulation of its secretion from liver and intestine, pathways for its healthy removal from the circulation by the liver, and mechanisms for the retention of apoB-lipoproteins within the vessel wall. It uses this extensive knowledge to reclassify epidemiologic risk factors for atherosclerotic cardiovascular events into causative factors, exacerbating factors, and mere bystander phenomena. © 2015 John Wiley & Sons, Inc.
  •  
11.
  •  
12.
  • Williams, Kevin Jon, 1956, et al. (author)
  • How an Artery Heals
  • 2015
  • In: Circulation Research. - 0009-7330. ; 117:11, s. 909-913
  • Journal article (peer-reviewed)
  •  
13.
  • Williams, Kevin Jon, 1956, et al. (author)
  • Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward
  • 2016
  • In: Atherosclerosis. - : Elsevier BV. - 0021-9150. ; 247, s. 225-282
  • Journal article (peer-reviewed)abstract
    • The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol-and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and - crucially - hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain - abbreviated 'NSAPP' after its five major proteins - fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
  •  
14.
  • Wu, X. D., et al. (author)
  • An oxide transport chain essential for balanced insulin action
  • 2020
  • In: Atherosclerosis. - : Elsevier BV. - 0021-9150. ; 298, s. 42-51
  • Journal article (peer-reviewed)abstract
    • Background and aims: Patients with overnutrition, obesity, the atherometabolic syndrome, and type 2 diabetes typically develop fatty liver, atherogenic dyslipoproteinemia, hyperglycemia, and hypertension. These features share an unexplained origin - namely, imbalanced insulin action, also called pathway-selective insulin resistance and responsiveness. To control glycemia, these patients require hyperinsulinemia that then overdrives ERK and hepatic de-novo lipogenesis. We previously reported that NADPH oxidase-4 regulates balanced insulin action, but the model appeared incomplete. Methods: We conducted structure-function studies in liver cells to search for additional molecular mediators of balanced insulin action. Results: We found that NADPH oxidase-4 is part of a new limb of insulin signaling that we abbreviate "NSAPP" after its five major proteins. The NSAPP pathway is an oxide transport chain that begins when insulin stimulates NADPH oxidase-4 to generate superoxide (O-2(center dot-)). NADPH oxidase-4 forms a novel, tight complex with superoxide dismutase-3, to efficiently transfer O-2(center dot-) for quantitative conversion into hydrogen peroxide. The pathway ends when aquaporin-3 channels H2O2 across the plasma membrane to inactivate PTEN. Accordingly, aquaporin-3 forms a novel complex with PTEN in McArdle hepatocytes and in unpassaged human primary hepatic parenchymal cells. Molecular or chemical disruption of any component of the NSAPP chain, from NADPH oxidase-4 up to PTEN, leaves PTEN persistently active, thereby recapitulating the same deadly pattern of imbalanced insulin action seen clinically. Conclusions: The NSAPP pathway functions as a master regulator of balanced insulin action via ERK, PI3K-AKT, and downstream targets of AKT. Unraveling its dysfunction in overnutrition might clarify the molecular cause of the atherometabolic syndrome and type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view