SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Winckler Wendy) "

Search: WFRF:(Winckler Wendy)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barretina, Jordi, et al. (author)
  • Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy.
  • 2010
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:8, s. 715-21
  • Journal article (peer-reviewed)abstract
    • Soft-tissue sarcomas, which result in approximately 10,700 diagnoses and 3,800 deaths per year in the United States, show remarkable histologic diversity, with more than 50 recognized subtypes. However, knowledge of their genomic alterations is limited. We describe an integrative analysis of DNA sequence, copy number and mRNA expression in 207 samples encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic liposarcomas) and PIK3CA (18% of myxoid/round-cell liposarcomas, or MRCs). PIK3CA mutations in MRCs were associated with Akt activation and poor clinical outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that short hairpin RNA (shRNA)-based knockdown of several genes amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map of molecular alterations across diverse sarcoma subtypes and suggests potential subtype-specific targets for therapy.
  •  
2.
  • Ding, Li, et al. (author)
  • Somatic mutations affect key pathways in lung adenocarcinoma
  • 2008
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 455:7216, s. 1069-1075
  • Journal article (peer-reviewed)abstract
    • Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.
  •  
3.
  • Dutt, Amit, et al. (author)
  • Drug-sensitive FGFR2 mutations in endometrial carcinoma
  • 2008
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:25, s. 8713-8717
  • Journal article (peer-reviewed)abstract
    • Oncogenic activation of tyrosine kinases is a common mechanism of carcinogenesis and, given the druggable nature of these enzymes, an attractive target for anticancer therapy. Here, we show that somatic mutations of the fibroblast growth factor receptor 2 (FGFR2) tyrosine kinase gene, FGFR2, are present in 12% of endometrial carcinomas, with additional instances found in lung squamous cell carcinoma and cervical carcinoma. These FGFR2 mutations, many of which are identical to mutations associated with congenital craniofacial developmental disorders, are constitutively activated and oncogenic when ectopically expressed in NIH 3T3 cells. Inhibition of FGFR2 kinase activity in endometrial carcinoma cell lines bearing such FGFR2 mutations inhibits transformation and survival, implicating FGFR2 as a novel therapeutic target in endometrial carcinoma.
  •  
4.
  • Florez, Jose C., et al. (author)
  • The Kruppel-like factor 11 (KLF11) Q62R polymorphism is not associated with type 2 diabetes in 8,676 people
  • 2006
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:12, s. 3620-3624
  • Journal article (peer-reviewed)abstract
    • Kruppel-like factor 11 is a pancreatic transcription factor whose activity induces the insulin gene. A common glutamine-to-arginine change at codon 62 (Q62R) in its gene KLF11 has been recently associated with type 2 diabetes in two independent samples. Q62R and two other rare missense variants (A347S and T220M) were also shown to affect the function of KLF11 in vitro, and insulin levels were lower in carriers of the minor allele at Q62R. We therefore examined their impact on common type 2 diabetes in several family-based and case-control samples of northern-European ancestry, totaling 8,676 individuals. We did not detect the rare A347S and T220M variants in our samples. With respect to Q62R, despite > 99% power to detect an association of the previously published magnitude, Q62R was not associated with type 2 diabetes (pooled odds ratio 0.97 [95% Cl 0.88-1.08], P = 0.63). In a subset of normoglycemic individuals, we did not observe significant differences in various insulin traits according to genotype at KLF11 Q62R. We conclude that the KLF11 A347S and T220M mutations do not contribute to increased risk of diabetes in European-derived populations and that the Q62R polymorphism has, at best, a minor effect on diabetes risk.
  •  
5.
  • Lyon, Helen N., et al. (author)
  • Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity
  • 2006
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:11, s. 3180-3184
  • Journal article (peer-reviewed)abstract
    • The common missense single nucleotide polymorphism (SNP) K121Q in the ectoenzyme nucleotide pyrophosphate phosphodiesterase (ENPP1) gene has recently been associated with type 2 diabetes in Italian, U.S., and South-Asian populations. A three-SNP haplotype, including K121Q, has also been associated with obesity and type 2 diabetes in French and Austrian populations. We set out to confirm these findings in several large samples. We genotyped the haplotype K121Q (rs1044498), rs1799774, and rs7754561 in 8,676 individuals of European ancestry with and without type 2 diabetes, in 1,900 obese and 930 lean individuals of European ancestry from the U.S. and Poland, and in 1,101 African-American individuals. Neither the K121Q missense polymorphism nor the putative risk haplotype were significantly associated with type 2 diabetes or BMI. Two SNPs showed suggestive evidence of association in a meta-analysis of our European ancestry samples. These SNPs were rs7754561 with type 2 diabetes 0.85 [95% CI 0.78-0.92], P = 0.00003) and rs1799774 with BMI (homozygotes of the delT-allele, 0.6 [0.42-0.88], P = 0.007). However, these findings are not supported by other studies. We did not observe a reproducible association between these three ENPP1 variants and BMI or type 2 diabetes.
  •  
6.
  • Winckler, Wendy, et al. (author)
  • Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes
  • 2007
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 56:3, s. 685-693
  • Journal article (peer-reviewed)abstract
    • An important question in human genetics is the extent to which genes causing monogenic forms of disease harbor common variants that may contribute to the more typical form of that disease. We aimed to comprehensively evaluate the extent to which common variation irk the six known maturity-onset diabetes of the young (MODY) genes, which cause a monogenic form of type 2 diabetes, is associated with type 2 diabetes. Specifically, we determined patterns of common sequence variation in the genes encoding Gck, lpf1, Tcf2, and NeuroD1 (MODY2 and MODY4-MODY6, respectively), selected a comprehensive set of 107 tag single nucleotide polymorphisms (SNPs) that captured common variation, and genotyped each in 4,206 patients and control subjects from Sweden, Finland, and Canada (including family-based studies and unrelated case-control subjects). All SNPs with a nominal P value < 0.1 for association to type 2 diabetes in this initial screen were then genotyped in an additional 4,470 subjects from North America and Poland. Of 30 nominally significant SNPs from the initial sample, 8 achieved consistent results in the replication sample. We found the strongest effect at rs757210 in intron 2 of TCF2, with corrected P values < 0.01 for an odds ratio (OR) of 1.13. This association was observed again in an independent sample of 5,891 unrelated case and control subjects and 500 families from the U.K., for an overall OR of 1.12 and a P value < 10(-6) in > 15,000 samples. We combined these results with our previous studies on HNF4 alpha and TCF1 and explicitly tested for gene-gene interactions among these variants and with several known type 2 diabetes susceptibility loci, and we found no genetic interactions between these six genes. We conclude that although rare variants in these six genes explain most cases of MODY, common variants in these same genes contribute very modestly, if at all, to the common form of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view