SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Worsnop Douglas R.) "

Search: WFRF:(Worsnop Douglas R.)

  • Result 1-25 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Lehtipalo, Katrianne, et al. (author)
  • Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
  • 2018
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4:12
  • Journal article (peer-reviewed)abstract
    • A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  •  
3.
  • Mehra, Archit, et al. (author)
  • Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation
  • 2020
  • In: ATMOSPHERIC CHEMISTRY AND PHYSICS. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:16, s. 9783-9803
  • Journal article (peer-reviewed)abstract
    • Aromatic volatile organic compounds (VOCs) are key anthropogenic pollutants emitted to the atmosphere and are important for both ozone and secondary organic aerosol (SOA) formation in urban areas. Recent studies have indicated that aromatic hydrocarbons may follow previously unknown oxidation chemistry pathways, including autoxidation that can lead to the formation of highly oxidised products. In this study we evaluate the gas- and particle-phase ions measured by online mass spectrometry during the hydroxyl radical oxidation of substituted C-9-aromatic isomers (1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, propylbenzene and isopropylbenzene) and a substituted polyaromatic hydrocarbon (1-methylnaphthalene) under low- and medium-NO x conditions. A time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) with iodide-anion ionisation was used with a filter inlet for gases and aerosols (FIGAERO) for the detection of products in the particle phase, while a Vocus protontransfer-reaction mass spectrometer (Vocus-PTR-MS) was used for the detection of products in the gas phase. The signal of product ions observed in the mass spectra were compared for the different precursors and experimental conditions. The majority of mass spectral product signal in both the gas and particle phases comes from ions which are common to all precursors, though signal distributions are distinct for different VOCs. Gas- and particle-phase composition are distinct from one another. Ions corresponding to products contained in the near-explicit gas phase Master Chemical Mechanism (MCM version 3.3.1) are utilised as a benchmark of current scientific understanding, and a comparison of these with observations shows that the MCM is missing a range of highly oxidised products from its mechanism. In the particle phase, the bulk of the product signal from all precursors comes from ring scission ions, a large proportion of which are more oxidised than previously reported and have undergone further oxidation to form highly oxygenated organic molecules (HOMs). Under the perturbation of OH oxidation with increased NOx, the contribution of HOM-ion signals to the particle-phase signal remains elevated for more substituted aromatic precursors. Up to 43% of product signal comes from ring-retaining ions including HOMs; this is most important for the more substituted aromatics. Unique products are a minor component in these systems, and many of the dominant ions have ion formulae concurrent with other systems, highlighting the challenges in utilising marker ions for SOA.
  •  
4.
  • Cai, Jing, et al. (author)
  • Size-segregated particle number and mass concentrations from different emission sources in urban Beijing
  • 2020
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:21, s. 12721-12740
  • Journal article (peer-reviewed)abstract
    • Although secondary particulate matter is reported to be the main contributor of PM2.5 during haze in Chinese megacities, primary particle emissions also affect particle concentrations. In order to improve estimates of the contribution of primary sources to the particle number and mass concentrations, we performed source apportionment analyses using both chemical fingerprints and particle size distributions measured at the same site in urban Beijing from April to July 2018. Both methods resolved factors related to primary emissions, including vehicular emissions and cooking emissions, which together make up 76% and 24% of total particle number and organic aerosol (OA) mass, respectively. Similar source types, including particles related to vehicular emissions (1.6 +/- 1.1 mu gm(-3); 2.4 +/- 1.8 x 10(3) cm(-3) and 5.5 +/- 2.8 x 10(3) cm(-3) for two traffic-related components), cooking emissions (2.6 +/- 1.9 mu gm(-3) and 5.5 +/- 3.3 x 10(3) cm(-3)) and secondary aerosols (51 +/- 41 mu gm(-3) and 4.2 +/- 3.0 x 10(3) cm(-3)), were resolved by both methods. Converted mass concentrations from particle size distributions components were comparable with those from chemical fingerprints. Size distribution source apportionment separated vehicular emissions into a component with a mode diameter of 20 nm (traffic-ultrafine) and a component with a mode diameter of 100 nm (traffic-fine). Consistent with similar day- and nighttime diesel vehicle PM2.5 emissions estimated for the Beijing area, traffic-fine particles, hydrocarbon-like OA (HOA, traffic-related factor resulting from source apportionment using chemical fingerprints) and black carbon (BC) showed similar diurnal patterns, with higher concentrations during the night and morning than during the afternoon when the boundary layer is higher. Traffic-ultrafine particles showed the highest concentrations during the rush-hour period, suggesting a prominent role of local gasoline vehicle emissions. In the absence of new particle formation, our re-sults show that vehicular-related emissions (14% and 30% for ultrafine and fine particles, respectively) and cooking-activity-related emissions (32 %) dominate the particle number concentration, while secondary particulate matter (over 80 %) governs PM2.5 mass during the non-heating season in Beijing.
  •  
5.
  • Kirkby, Jasper, et al. (author)
  • Ion-induced nucleation of pure biogenic particles
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 521-526
  • Journal article (peer-reviewed)abstract
    • Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood(1). Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours(2). It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere(3,4), and that ions have a relatively minor role(5). Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded(6,7). Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of a-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
  •  
6.
  • Laaksonen, A., et al. (author)
  • The role of VOC oxidation products in continental new particle formation
  • 2008
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8:10, s. 2657-2665
  • Journal article (peer-reviewed)abstract
    • Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March-April 2003, in Hyytiala, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10-50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3-10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.
  •  
7.
  • Riipinen, Ilona, et al. (author)
  • The contribution of organics to atmospheric nanoparticle growth
  • 2012
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 5:7, s. 453-458
  • Journal article (peer-reviewed)abstract
    • Aerosols have a strong, yet poorly quantified, effect on climate. The growth of the smallest atmospheric particles from diameters in the nanometre range to sizes at which they may act as seeds for cloud droplets is a key step linking aerosols to clouds and climate. In many environments, atmospheric nanoparticles grow by taking up organic compounds that are derived from biogenic hydrocarbon emissions. Several mechanisms may control this uptake. Condensation of low-volatility vapours and formation of organic salts probably dominate the very first steps of growth in particles close to 1 nm in diameter. As the particles grow further, formation of organic polymers and effects related to the phase of the particle probably become increasingly important. We suggest that dependence of particle growth mechanisms on particle size needs to be investigated more systematically.
  •  
8.
  • Shrivastava, Manish, et al. (author)
  • Recent advances in understanding secondary organic aerosol : Implications for global climate forcing
  • 2017
  • In: Reviews of Geophysics. - 8755-1209. ; 55:2, s. 509-559
  • Journal article (peer-reviewed)abstract
    • Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.
  •  
9.
  • Tröstl, Jasmin, et al. (author)
  • The role of low-volatility organic compounds in initial particle growth in the atmosphere
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 527-531
  • Journal article (peer-reviewed)abstract
    • About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday(1). Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres(2,3). In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles(4), thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth(5,6), leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer(7-10). Although recent studies(11-13) predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon(2), and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Kohler theory)(2,14), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown(15) that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
  •  
10.
  • Wagner, Robert, et al. (author)
  • The role of ions in new particle formation in the CLOUD chamber
  • 2017
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:24, s. 15181-15197
  • Journal article (peer-reviewed)abstract
    • The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion-ion recombination before they grew to 2.5 nm. At this size, more than 90% of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiala, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations are needed to resolve the origin of the discrepancy.
  •  
11.
  • Almeida, Joao, et al. (author)
  • Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 359-
  • Journal article (peer-reviewed)abstract
    • Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
  •  
12.
  • Beck, Lisa J., et al. (author)
  • Differing Mechanisms of New Particle Formation at Two Arctic Sites
  • 2021
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:4
  • Journal article (peer-reviewed)abstract
    • New particle formation in the Arctic atmosphere is an important source of aerosol particles. Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant impact on cloud properties and therefore Arctic amplification. We observed the molecular formation of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary aerosol particles.
  •  
13.
  • Bianchi, Federico, et al. (author)
  • Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals : A Key Contributor to Atmospheric Aerosol
  • 2019
  • In: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 119:6, s. 3472-3509
  • Research review (peer-reviewed)abstract
    • Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earths radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research.
  •  
14.
  • Buchholz, Angela, et al. (author)
  • Insights into the O : C-dependent mechanisms controlling the evaporation of alpha-pinene secondary organic aerosol particles
  • 2019
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:6, s. 4061-4073
  • Journal article (peer-reviewed)abstract
    • The volatility of oxidation products of volatile organic compounds (VOCs) in the atmosphere is a key factor to determine if they partition into the particle phase contributing to secondary organic aerosol (SOA) mass. Thus, linking volatility and measured particle composition will provide insights into SOA formation and its fate in the atmosphere. We produced alpha-pinene SOA with three different oxidation levels (characterized by average oxygen-to-carbon ratio; (O:C) over bar = 0.53, 0.69, and 0.96) in an oxidation flow reactor. We investigated the particle volatility by isothermal evaporation in clean air as a function of relative humidity (RH < 2 %, 40 %, and 80 %) and used a filter-based thermal desorption method to gain volatility and chemical composition information. We observed reduced particle evaporation for particles with increasing <(O:C )over bar> ratio, indicating that particles become more resilient to evaporation with oxidative aging. Particle evaporation was increased in the presence of water vapour and presumably particulate water; at the same time the resistance of the residual particles to thermal desorption was increased as well. For SOA with (O:C ) over bar = 0.96, the unexpectedly large increase in mean thermal desorption temperature and changes in the thermogram shapes under wet conditions (80 % RH) were an indication of aqueous phase chemistry. For the lower (O:C ) over bar cases, some water-induced composition changes were observed. However, the enhanced evaporation under wet conditions could be explained by the reduction in particle viscosity from the semi-solid to liquid-like range, and the observed higher desorption temperature of the residual particles is a direct consequence of the increased removal of high-volatility and the continued presence of low-volatility compounds.
  •  
15.
  • Donahue, Neil M., et al. (author)
  • How do organic vapors contribute to new-particle formation?
  • 2013
  • In: Faraday discussions. - : Royal Society of Chemistry. - 1359-6640 .- 1364-5498. ; 165, s. 91-104
  • Journal article (peer-reviewed)abstract
    • Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.
  •  
16.
  • Hao, Liqing, et al. (author)
  • Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods
  • 2018
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:23, s. 17705-17716
  • Journal article (peer-reviewed)abstract
    • Characterizing aerosol chemical composition in response to meteorological changes and atmospheric chemistry is important to gain insights into new particle formation mechanisms. A BAECC (Biogenic Aerosols - Effects on Clouds and Climate) campaign was conducted during the spring 2014 at the SMEAR II station (Station for Measuring Forest Ecosystem-Aerosol Relations) in Finland. The particles were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). A PBL (planetary boundary layer) dilution model was developed to assist interpreting the measurement results. Right before nucleation events, the mass concentrations of organic and sulfate aerosol species were both decreased rapidly along with the growth of PBL heights. However, the mass fraction of sulfate aerosol of the total aerosol mass was increased, in contrast to a decrease for the organic mass fraction. Meanwhile, an increase in LVOOA (low-volatility oxygenated organic aerosol) mass fraction of the total organic mass was observed, in distinct comparison to a reduction of SVOOA (semi-volatile OOA) mass fraction. Our results demonstrate that, at the beginning of nucleation events, the observed sulfate aerosol mass was mainly driven by vertical turbulent mixing of sulfate-rich aerosols between the residual layer and the newly formed boundary layer, while the condensation of sulfuric acid (SA) played a minor role in interpreting the measured sulfate mass concentration. For the measured organic aerosols, their temporal profiles were mainly driven by dilution from PBL development, organic aerosol mixing in different boundary layers and/or partitioning of organic vapors, but accurate measurements of organic vapor concentrations and characterization on the spatial aerosol chemical composition are required. In general, the observed aerosol particles by AMS are subjected to joint effects of PBL dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During aerosol growth periods in the nighttime, the mass concentrations of organic aerosols and organic nitrate aerosols were both increased. The increase in SVOOA mass correlated well with the calculated increase in condensed HOMs' (highly oxygenated organic molecules) mass. To our knowledge, our results are the first atmospheric observations showing a connection between increase in SVOOA and condensed HOMs during the nighttime.
  •  
17.
  • Hong, Juan, et al. (author)
  • Estimates of the organic aerosol volatility in a boreal forest using two independent methods
  • 2017
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:6, s. 4387-4399
  • Journal article (peer-reviewed)abstract
    • The volatility distribution of secondary organic aerosols that formed and had undergone aging - i. e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase - was characterized in a boreal forest environment of Hyytiala, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40% of the organics in particles were semi-volatile, 34% were low-volatility organics and 26% were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (Delta H-VAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol(-1) were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m/z 43 (f43) and m/z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when Delta H-VAP D 80 kJ mol(-1) was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16% (R-2)of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.
  •  
18.
  • Huang, Wei, et al. (author)
  • Potential pre-industrial–like new particle formation induced by pure biogenic organic vapors in Finnish peatland
  • 2024
  • In: Science Advances. - 2375-2548. ; 10:14
  • Journal article (peer-reviewed)abstract
    • Pure biogenic new particle formation (NPF) induced by highly oxygenated organic molecules (HOMs) could be an important mechanism for pre-industrial aerosol formation. However, it has not been unambiguously confirmed in the ambient due to the scarcity of truly pristine continental locations in the present-day atmosphere or the lack of chemical characterization of NPF precursors. Here, we report ambient observations of pure biogenic HOM-driven NPF over a peatland in southern Finland. Meteorological decoupling processes formed an “air pocket” (i.e., a very shallow surface layer) at night and favored NPF initiated entirely by biogenic HOM from this peatland, whose atmospheric environment closely resembles that of the pre-industrial era. Our study sheds light on pre-industrial aerosol formation, which represents the baseline for estimating the impact of present and future aerosol on climate, as well as on future NPF, the features of which may revert toward pre-industrial–like conditions due to air pollution mitigation.
  •  
19.
  • Kirkby, Jasper, et al. (author)
  • Atmospheric new particle formation from the CERN CLOUD experiment
  • 2023
  • In: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 16:11, s. 948-957
  • Journal article (peer-reviewed)abstract
    • Aerosol particles in the atmosphere profoundly influence public health and climate. Ultrafine particles enter the body through the lungs and can translocate to essentially all organs, and they represent a major yet poorly understood health risk. Human activities have considerably increased aerosols and cloudiness since preindustrial times, but they remain persistently uncertain and underrepresented in global climate models. Here we present a synthesis of the current understanding of atmospheric new particle formation derived from laboratory measurements at the CERN CLOUD chamber. Whereas the importance of sulfuric acid has long been recognized, condensable vapours such as highly oxygenated organics and iodine oxoacids also play key roles, together with stabilizers such as ammonia, amines and ions from galactic cosmic rays. We discuss how insights from CLOUD experiments are helping to interpret new particle formation in different atmospheric environments, and to provide a mechanistic foundation for air quality and climate models. The CLOUD experiment provides important insights into new particle formation in different atmospheric environments.
  •  
20.
  • Kulmala, Markku, et al. (author)
  • Direct Observations of Atmospheric Aerosol Nucleation
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6122, s. 943-946
  • Journal article (peer-reviewed)abstract
    • Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation-more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.
  •  
21.
  • Lampilahti, Janne, et al. (author)
  • Zeppelin-led study on the onset of new particle formation in the planetary boundary layer
  • 2021
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:16, s. 12649-12663
  • Journal article (peer-reviewed)abstract
    • We compared observations of aerosol particle formation and growth in different parts of the planetary boundary layer at two different environments that have frequent new particle formation (NPF) events. In summer 2012 we had a campaign in Po Valley, Italy (urban background), and in spring 2013 a similar campaign took place in Hyytiälä, Finland (rural background). Our study consists of three case studies of airborne and ground-based measurements of ion and particle size distribution from ∼1 nm. The airborne measurements were performed using a Zeppelin inside the boundary layer up to 1000 m altitude. Our observations show the onset of regional NPF and the subsequent growth of the aerosol particles happening almost uniformly inside the mixed layer (ML) in both locations. However, in Hyytiälä we noticed local enhancement in the intensity of NPF caused by mesoscale boundary layer (BL) dynamics. Additionally, our observations indicate that in Hyytiälä NPF was probably also taking place above the ML. In Po Valley we observed NPF that was limited to a specific air mass.
  •  
22.
  • Lehtipalo, Katrianne, et al. (author)
  • The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.
  •  
23.
  • Paasonen, Pauli, et al. (author)
  • Warming-induced increase in aerosol number concentration likely to moderate climate change
  • 2013
  • In: Nature Geoscience. - 1752-0908. ; 6:6, s. 438-442
  • Journal article (peer-reviewed)abstract
    • Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei(1-4). Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate the warming caused by greenhouse gases(1). In the future, tightening of controls on anthropogenic aerosol and precursor vapour emissions to achieve higher air quality may weaken this beneficial effect(5-)7. Natural aerosols, too, might affect future warming(2,3,8,9). Here we analyse long-term observations of concentrations and compositions of aerosol particles and their biogenic precursor vapours in continental mid-and high-latitude environments. We use measurements of particle number size distribution together with boundary layer heights derived from reanalysis data to show that the boundary layer burden of cloud condensation nuclei increases exponentially with temperature. Our results confirm a negative feedback mechanism between the continental biosphere, aerosols and climate: aerosol cooling effects are strengthened by rising biogenic organic vapour emissions in response to warming, which in turn enhance condensation on particles and their growth to the size of cloud condensation nuclei. This natural growth mechanism produces roughly 50% of particles at the size of cloud condensation nuclei across Europe. We conclude that biosphere-atmosphere interactions are crucial for aerosol climate effects and can significantly influence the effects of anthropogenic aerosol emission controls, both on climate and air quality.
  •  
24.
  • Pajunoja, Aki, et al. (author)
  • Adsorptive uptake of water by semisolid secondary organic aerosols
  • 2015
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:8, s. 3063-3068
  • Journal article (peer-reviewed)abstract
    • Aerosol climate effects are intimately tied to interactions with water. Here we combine hygroscopicity measurements with direct observations about the phase of secondary organic aerosol (SOA) particles to show that water uptake by slightly oxygenated SOA is an adsorption-dominated process under subsaturated conditions, where low solubility inhibits water uptake until the humidity is high enough for dissolution to occur. This reconciles reported discrepancies in previous hygroscopicity closure studies. We demonstrate that the difference in SOA hygroscopic behavior in subsaturated and supersaturated conditions can lead to an effect up to about 30% in the direct aerosol forcinghighlighting the need to implement correct descriptions of these processes in atmospheric models. Obtaining closure across the water saturation point is therefore a critical issue for accurate climate modeling.
  •  
25.
  • Roldin, Pontus, et al. (author)
  • The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of −0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities < 0.2 m/s, and causes a direct aerosol radiative forcing of +0.15 W/m2. Hence, while HOM SOA contributes to climate cooling, NPF can result in climate warming over the Boreal forest.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view