SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Zampa N.) "

Search: WFRF:(Zampa N.)

  • Result 1-25 of 172
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  • Amati, L., et al. (author)
  • The THESEUS space mission concept : science case, design and expected performances
  • 2018
  • In: Advances in Space Research. - : ELSEVIER SCI LTD. - 0273-1177 .- 1879-1948. ; 62:1, s. 191-244
  • Journal article (peer-reviewed)abstract
    • THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1 sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift similar to 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
  •  
3.
  • Feroci, M., et al. (author)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Conference paper (peer-reviewed)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
4.
  • Feroci, M., et al. (author)
  • The large observatory for x-ray timing
  • 2014
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Conference paper (peer-reviewed)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
5.
  • Adriani, O., et al. (author)
  • Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment
  • 2013
  • In: JETP Letters. - 0021-3640 .- 1090-6487. ; 96:10, s. 621-627
  • Journal article (peer-reviewed)abstract
    • It is interesting to measure the antiproton galactic component in cosmic rays in order to study the mechanisms by which particles and antiparticles are generated and propagate in the Galaxy and to search for new sources of, e.g., annihilation or decay of dark matter hypothetical particles. The antiproton spectrum and the ratio of the fluxes of primary cosmic ray antiprotons to protons with energies of 60 MeV to 350 GeV found from the data obtained from June 2006 to January 2010 in the PAMELA experiment are presented. The usage of the advanced data processing method based on the data classification mathematical model made it possible to increase statistics and analyze the region of higher energies than in the earlier works.
  •  
6.
  • Adriani, O., et al. (author)
  • Measurements of quasi-trapped electron and positron fluxes with PAMELA
  • 2009
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114, s. A12218-
  • Journal article (peer-reviewed)abstract
    • This paper presents precise measurements of the differential energy spectra of quasi-trapped secondary electrons and positrons and their ratio between 80 MeV and 10 GeV in the near-equatorial region (altitudes between 350 km and 600 km). Latitudinal dependences of the spectra are analyzed in detail. The results were obtained from July until November 2006 onboard the Resurs-DK satellite by the PAMELA spectrometer, a general purpose cosmic ray detector system built around a permanent magnet spectrometer and a silicon-tungsten calorimeter.
  •  
7.
  • Adriani, O., et al. (author)
  • The PAMELA Space Mission for Antimatter and Dark Matter Searches in Cosmic Rays
  • 2010
  • In: SCIENCE WITH THE NEW GENERATION OF HIGH-ENERGY GAMMA-RAY EXPERIMENTS. - : AIP. - 9780735407671 ; , s. 33-42
  • Conference paper (peer-reviewed)abstract
    • On the 15(th) of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The instrument allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA is investigating phenomena connected with solar and earth physics. Results of the antiproton and positron data will be presented.
  •  
8.
  • Bazilevskaya, G. A., et al. (author)
  • Solar proton events at the end of the 23rd and start of the 24th solar cycle recorded in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 493-496
  • Journal article (peer-reviewed)abstract
    • The PAMELA magnetic spectrometer was launched into a near-Earth orbit on board the Resurs-DK1 satellite in June 2006; in December 2006, it recorded the last strong solar high-energy particle event of the 23rd solar cycle. A deficit was thereafter observed in solar energetic particle events because of the lengthy solar activity minimum and the weak evolution of the next (24th) solar cycle. As a result, only a few solar events involving protons with energies of more than 100 MeV were recorded between 2010 and 1012. This work presents the preliminary results from measurements of charged particle fluxes in these events, recorded by the Pamela spectrometer.
  •  
9.
  • De Simone, N., et al. (author)
  • PAMELA : Measurements of matter and antimatter in space
  • 2011
  • In: Nuovo cimento della societa italiana de fisica. C, Geophysics and space physics. - 1124-1896 .- 1826-9885. ; 34:3, s. 79-87
  • Journal article (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (antihelium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA investigates phenomena connected with solar and earth physics. The main results and updated data will be presented.
  •  
10.
  • Feroci, M., et al. (author)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • In: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Journal article (peer-reviewed)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
11.
  • Mayorov, A. G., et al. (author)
  • Antiprotons of galactic cosmic radiation in the PAMELA experiment
  • 2013
  • In: Bulletin of the Russian Academy of Sciences: Physics. - 1062-8738. ; 77:5, s. 602-605
  • Journal article (peer-reviewed)abstract
    • A method for antiproton selection against a background of electrons, based on a mathematical model of data classification using variations in interparticle interaction in a calorimeter, and a method for excluding events accompanied by scattering in the inner detectors of a tracking system (which result in errors in the measured trajectory's curvature and charge sign) from analysis are discussed in this paper. Antiproton spectra and antiproton/proton flux ratio at energies of 0.06 to 350 GeV with statistics of events surpassing those in [1] are obtained. The results can be used to create models for the generation and distribution of particles in the Galaxy, and for searching and studying the nature of hypothetical dark matter particles.
  •  
12.
  • Mocchiutti, E., et al. (author)
  • Precision studies of cosmic rays with the PAMELA satellite experiment
  • 2009
  • In: 2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5. - : IEEE. - 9781424439621 ; , s. 2125-2130
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15th 2006. The combination of a permanent magnet silicon strip spectrometer, and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - 200 GeV). A primary scientific goal is to search for dark matter particle annihilations by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment will be reviewed with a particular focus on cosmic ray antiprotons and positrons. The status of PAMELA measurements for other cosmic ray species will also be reviewed.
  •  
13.
  • Mocchiutti, E., et al. (author)
  • Results from PAMELA
  • 2011
  • In: NUCL PHYS B-PROC SUP. - : Elsevier BV. ; , s. 243-248
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15(th) 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - several hundred GeV). A primary scientific goal is to search for dark matter particle annihilation by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment are presented with a particular focus on cosmic ray antiprotons and positrons.
  •  
14.
  • Adriani, O., et al. (author)
  • A statistical procedure for the identification of positrons in the PAMELA experiment
  • 2010
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 34:1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • The PAMELA satellite experiment has measured the cosmic-ray positron fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate between the positron signal and proton background has required the development of an ad hoc analysis procedure. In this paper, a method for positron identification is described and its stability and capability to yield a correct background estimate is shown. The analysis includes new experimental data, the application of three different fitting techniques for the background sample and an estimate of systematic uncertainties due to possible inaccuracies in the background selection. The new experimental results confirm both solar modulation effects on cosmic-rays with low rigidities and an anomalous positron abundance above 10 GeV. (c) 2010 Elsevier B.V. All rights reserved.
  •  
15.
  • Adriani, O., et al. (author)
  • Antiprotons in primary cosmic radiation with PAMELA experiment
  • 2013
  • In: Proceedings of the 33rd International Cosmic Rays Conference, ICRC 2013. - : Sociedade Brasileira de Fisica. - 9788589064293
  • Conference paper (peer-reviewed)abstract
    • The latest measurements of antiprotons spectrum and antiproton-to-proton ratio in primary cosmic rays with PAMELA experiment are presented. They are in good agreement with model of secondary production of antiprotons in Galaxy, but they do not completely rule other sources at the high-energies. 
  •  
16.
  • Adriani, O., et al. (author)
  • Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV
  • 2011
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:20, s. 201101-
  • Journal article (peer-reviewed)abstract
    • Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e(-) have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 +/- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.
  •  
17.
  • Adriani, O., et al. (author)
  • Latest results from the Pamela experiment
  • 2009
  • In: Proceedings of Science. ; , s. 1-6
  • Conference paper (peer-reviewed)abstract
    • In this paper we present the latest results of the Pamela satellite experiment, focusing in particular on the p̄/p and the e +/(e+ +e-) ratios.
  •  
18.
  • Adriani, O., et al. (author)
  • Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment
  • 2013
  • In: Astrophysical Journal. - : IOP Publishing. - 0004-637X .- 1538-4357. ; 770:1, s. 2-
  • Journal article (peer-reviewed)abstract
    • The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV /n for hydrogen and between 100 and 900 MeV /n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.
  •  
19.
  • Adriani, O., et al. (author)
  • OBSERVATIONS OF THE 2006 DECEMBER 13 AND 14 SOLAR PARTICLE EVENTS IN THE 80 MeV n(-1)-3 GeV n(-1) RANGE FROM SPACE WITH THE PAMELA DETECTOR
  • 2011
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 742:2, s. 102-
  • Journal article (peer-reviewed)abstract
    • We present the space spectrometer PAMELA observations of proton and helium fluxes during the 2006 December 13 and 14 solar particle events. This is the first direct measurement of the solar energetic particles in space with a single instrument in the energy range from similar to 80 MeV n(-1) up to similar to 3 GeV n(-1). For the December 13 event, measured energy spectra of solar protons and helium are compared with results obtained by neutron monitors and other detectors. Our measurements show a spectral behavior different from those derived from the neutron monitor network. No satisfactory analytical fitting was found for the energy spectra. During the first hours of the December 13 event, solar energetic particles spectra were close to the exponential form, demonstrating rather significant temporal evolution. Solar He with energy up to 1 GeV n(-1) was recorded on December 13. For the December 14 event, energy of solar protons reached 600 MeV, whereas the maximum energy of He was below 100 MeV n(-1). The spectra were slightly bent in the lower energy range and preserved their form during the second event. Differences in the particle flux appearance and temporal evolution of these two events may argue for special conditions leading to the acceleration of solar particles up to relativistic energies.
  •  
20.
  • Adriani, O., et al. (author)
  • PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra
  • 2011
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 332:6025, s. 69-72
  • Journal article (peer-reviewed)abstract
    • Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.
  •  
21.
  • Adriani, O., et al. (author)
  • PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy
  • 2010
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:12, s. 121101-
  • Journal article (peer-reviewed)abstract
    • The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.
  •  
22.
  • Adriani, O., et al. (author)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Journal article (peer-reviewed)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
23.
  • Adriani, O., et al. (author)
  • The PAMELA Mission : Heralding a new era in precision cosmic ray physics
  • 2014
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 544:4, s. 323-370
  • Research review (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA (Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) satellite-borne experiment was launched onboard the Russian Resurs-DK1 satellite by a Soyuz rocket from the Baikonur space centre. The satellite was placed in a quasi-polar 70 degrees inclination orbit at an altitude varying between 350 km and 600 km. New results on the antiparticle component of the cosmic radiation were obtained. The positron energy spectrum and positron fraction were measured from 400 MeV up to 200 GeV revealing a positron excess over the predictions of commonly used propagation models. This can be interpreted either as evidence that the propagation models should be revised or in terms of dark matter annihilation or a pulsar contribution. The antiproton spectrum was measured over the energy range from 60 MeV to 350 GeV. The antiproton spectrum is consistent with secondary production and significantly constrains dark matter models. The energy spectra of protons and helium nuclei were measured up to 1.2 TV. The spectral shapes of these two species are different and cannot be described well by a single power law. For the First time the electron spectrum was measured up to 600 GeV complementing the information obtained from the positron data. Nuclear and isotopic composition was obtained with unprecedented precision. The variation of the low energy proton, electron and positron energy spectra was measured from July 2006 until December 2009 accurately sampling the unusual conditions of the most recent solar minimum activity period (2006-2009). Low energy particle spectra were accurately measured also for various solar events that occurred during the PAMELA mission. The Earth's magnetosphere was studied measuring the particle radiation in different regions of the magnetosphere. Energy spectra and composition of sub-cutoff and trapped particles were obtained. For the first time a belt of trapped antiprotons was detected in the South Atlantic Anomaly region. The flux was found to exceed that for galactic cosmic-ray antiprotons by three order of magnitude.
  •  
24.
  • Adriani, O., et al. (author)
  • The PAMELA space mission
  • 2008
  • In: Astroparticle, Part. Space Phys., Detect. Med. Phys. Appl. - Proc. Conf.. - : WORLD SCIENTIFIC. - 9812819088 - 9789812819086 ; , s. 858-864
  • Conference paper (peer-reviewed)abstract
    • The PAMELA (a Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics) experiment, is a satellite-borne particle spectrometer. It was launched on 15th June 2006 from the Baikonur cosmodrome in Kazakhstan, is installed into the Russian Resurs-DK1 satellite. PAMELA is composed of a time-of-flight system, a magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. Among the PAMELA major objectives are the study of charged particles in the cosmic radiation, the investigation of the nature of dark matter, by mean of the measure of the cosmic-ray antiproton and positron spectra over the largest energy range ever achieved. PAMELA has been in a nearly continuous data taking mode since llth July 2006. The status of the apparatus and performances will be presented.
  •  
25.
  • Adriani, O., et al. (author)
  • Time Dependence Of The Proton Flux Measured By Pamela During The 2006 July-2009 December Solar Minimum
  • 2013
  • In: Astrophysical Journal. - : IOP Publishing. - 0004-637X .- 1538-4357. ; 765:2, s. 91-
  • Journal article (peer-reviewed)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmic radiation must therefore include the transport and modulation of cosmic rays inside the heliosphere. During the end of the last decade, the Sun underwent a peculiarly long quiet phase well suited to study modulation processes. In this paper we present proton spectra measured from 2006 July to 2009 December by PAMELA. The large collected statistics of protons allowed the time variation to be followed on a nearly monthly basis down to 400 MV. Data are compared with a state-of-the-art three-dimensional model of solar modulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 172

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view