SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Pablo Yolanda) "

Search: WFRF:(de Pablo Yolanda)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aswendt, M., et al. (author)
  • Reactive astrocytes prevent maladaptive plasticity after ischemic stroke
  • 2022
  • In: Progress in Neurobiology. - : Elsevier BV. - 0301-0082. ; 209
  • Journal article (peer-reviewed)abstract
    • Restoration of functional connectivity is a major contributor to functional recovery after stroke. We investigated the role of reactive astrocytes in functional connectivity and recovery after photothrombotic stroke in mice with attenuated reactive gliosis (GFAP–/–Vim–/–). Infarct volume and longitudinal functional connectivity changes were determined by in vivo T2-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Sensorimotor function was assessed with behavioral tests, and glial and neural plasticity responses were quantified in the peri-infarct region. Four weeks after stroke, GFAP–/–Vim–/– mice showed impaired recovery of sensorimotor function and aberrant restoration of global neuronal connectivity. These mice also exhibited maladaptive plasticity responses, shown by higher number of lost and newly formed functional connections between primary and secondary targets of cortical stroke regions and increased peri-infarct expression of the axonal plasticity marker Gap43. We conclude that reactive astrocytes modulate recovery-promoting plasticity responses after ischemic stroke. © 2021
  •  
2.
  • de Pablo, Yolanda, et al. (author)
  • Drugs targeting intermediate filaments can improve neurosupportive properties of astrocytes.
  • 2018
  • In: Brain Research Bulletin. - : Elsevier BV. - 0361-9230. ; 136, s. 130-138
  • Journal article (peer-reviewed)abstract
    • In response to central nervous system (CNS) injury, astrocytes upregulate intermediate filament (nanofilament) proteins GFAP and vimentin. Whereas the intermediate filament upregulation in astrocytes is important for neuroprotection in the acute phase of injury, it might inhibit the regenerative processes later on. Thus, timely modulation of the astrocyte intermediate filaments was proposed as a strategy to promote brain repair. We used clomipramine, epoxomicin and withaferin A, drugs reported to decrease the expression of GFAP, and assessed their effect on neurosupportive properties and resilience of astrocytes to oxygen and glucose deprivation (OGD). Clomipramine decreased protein levels of GFAP, as well as vimentin and nestin, and did not affect astrocyte resilience to oxidative stress. Withaferin A sensitized astrocytes to OGD. Both clomipramine and epoxomicin promoted the attachment and survival of neurons co-cultured with astrocytes under standard culture conditions. Moreover, epoxomicin increased neurosupportive properties of astrocytes after OGD. Our data point to clomipramine and epoxomicin as potential candidates for astrocyte modulation to improve outcome after CNS injury.
  •  
3.
  • de Pablo, Yolanda, et al. (author)
  • Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion
  • 2013
  • In: Histochemistry and Cell Biology. - : Springer Science and Business Media LLC. - 0948-6143 .- 1432-119X. ; 140:1, s. 81-91
  • Journal article (peer-reviewed)abstract
    • As a response to central nervous system injury, astrocytes become reactive. Two cellular hallmarks of reactive gliosis are hypertrophy of astrocyte processes and upregulation of intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP), vimentin, nestin, and synemin. Astrocytes in mice devoid of GFAP and vimentin (GFAP (-/-) Vim (-/-)) do not form cytoplasmic intermediate filaments. GFAP (-/-) Vim (-/-) mice develop larger infarcts after ischemic stroke (Li et al. in J Cereb Blood Flow Metab 28(3):468-481, 2008). Here, we attempted to analyze the underlying mechanisms using oxygen-glucose deprivation (OGD), an in vitro ischemia model, examining a potential link between astrocyte intermediate filaments and reactive oxygen species (ROS). We observed a reorganization of the intermediate filament network in astrocytes exposed to OGD. ROS accumulation was higher in GFAP (-/-) Vim (-/-) than wild-type astrocytes when exposed to OGD followed by reperfusion or when exposed to hydrogen peroxide. These results indicate that the elimination of ROS is impaired in the absence of the intermediate filament system. Compared to wild-type astrocytes, GFAP (-/-) Vim (-/-) astrocytes exposed to OGD and reperfusion exhibited increased cell death and conferred lower degree of protection to cocultured neurons. We conclude that the astrocyte intermediate filament system is important for the cell response to oxidative stress induced by OGD followed by reperfusion.
  •  
4.
  • de Pablo, Yolanda, et al. (author)
  • Vimentin Phosphorylation Is Required for Normal Cell Division of Immature Astrocytes
  • 2019
  • In: Cells. - : MDPI AG. - 2073-4409. ; 8:9
  • Journal article (peer-reviewed)abstract
    • Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP(-/-) mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP(-/-) background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIM(SA/SA)GFAP(-/-) astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.
  •  
5.
  • Lasič, Eva, et al. (author)
  • Nestin affects fusion pore dynamics in mouse astrocytes.
  • 2020
  • In: Acta physiologica. - : Wiley. - 1748-1716 .- 1748-1708. ; 228:3
  • Journal article (peer-reviewed)abstract
    • Astrocytes play a homeostatic role in the central nervous system and influence numerous aspects of neurophysiology via intracellular trafficking of vesicles. Intermediate filaments (IFs), also known as nanofilaments, regulate a number of cellular processes including organelle trafficking and adult hippocampal neurogenesis. We have recently demonstrated that the IF protein nestin, a marker of neural stem cells and immature and reactive astrocytes, is also expressed in some astrocytes in the unchallenged hippocampus and regulates neurogenesis through Notch signalling from astrocytes to neural stem cells, possibly via altered trafficking of vesicles containing the Notch ligand Jagged-1.We thus investigated whether nestin affects vesicle dynamics in astrocytes by examining single vesicle interactions with the plasmalemma and vesicle trafficking with high-resolution cell-attached membrane capacitance measurements and confocal microscopy. We used cell cultures of astrocytes from nestin-deficient (Nes-/- ) and wild-type (wt) mice, and fluorescent dextran and Fluo-2 to examine vesicle mobility and intracellular Ca2+ concentration respectively.Nes-/- astrocytes exhibited altered sizes of vesicles undergoing full fission and transient fusion, altered vesicle fusion pore geometry and kinetics, decreased spontaneous vesicle mobility and altered ATP-evoked mobility. Purinergic stimulation evoked Ca2+ signalling that was slightly attenuated in Nes-/- astrocytes, which exhibited more oscillatory Ca2+ responses than wt astrocytes.These results demonstrate at the single vesicle level that nestin regulates vesicle interactions with the plasmalemma and vesicle trafficking, indicating its potential role in astrocyte vesicle-based communication.
  •  
6.
  • Pekna, Marcela, 1966, et al. (author)
  • Astrocyte Responses to Complement Peptide C3a are Highly Context-Dependent
  • 2023
  • In: Neurochemical Research. - : Springer Science and Business Media LLC. - 0364-3190 .- 1573-6903. ; 48:4, s. 1233-1241
  • Journal article (peer-reviewed)abstract
    • Astrocytes perform a range of homeostatic and regulatory tasks that are critical for normal functioning of the central nervous system. In response to an injury or disease, astrocytes undergo a pronounced transformation into a reactive state that involves changes in the expression of many genes and dramatically changes astrocyte morphology and functions. This astrocyte reactivity is highly dependent on the initiating insult and pathological context. C3a is a peptide generated by the proteolytic cleavage of the third complement component. C3a has been shown to exert neuroprotective effects, stimulate neural plasticity and promote astrocyte survival but can also contribute to synapse loss, Alzheimer's disease type neurodegeneration and blood-brain barrier dysfunction. To test the hypothesis that C3a elicits differential effects on astrocytes depending on their reactivity state, we measured the expression of Gfap, Nes, C3ar1, C3, Ngf, Tnf and Il1b in primary mouse cortical astrocytes after chemical ischemia, after exposure to lipopolysaccharide (LPS) as well as in control naive astrocytes. We found that C3a down-regulated the expression of Gfap, C3 and Nes in astrocytes after ischemia. Further, C3a increased the expression of Tnf and Il1b in naive astrocytes and the expression of Nes in astrocytes exposed to LPS but did not affect the expression of C3ar1 or Ngf. Jointly, these results provide the first evidence that the complement peptide C3a modulates the responses of astrocytes in a highly context-dependent manner.
  •  
7.
  •  
8.
  • Puschmann, Till B., et al. (author)
  • A Novel Method for Three-Dimensional Culture of Central Nervous System Neurons.
  • 2014
  • In: Tissue engineering. Part C, Methods. - 1937-3392 .- 1937-3384. ; 20:6, s. 485-492
  • Journal article (peer-reviewed)abstract
    • Neuronal signal transduction and communication in vivo is based on highly complex and dynamic networks among neurons expanding in a three-dimensional (3D) manner. Studies of cell-cell communication, synaptogenesis, and neural network plasticity constitute major research areas for understanding the involvement of neurons in neurodegenerative diseases, such as Huntington's, Alzheimer's, and Parkinson's disease, and in regenerative neural plasticity responses in situations, such as neurotrauma or stroke. Various cell culture systems constitute important experimental platforms to study neuronal functions in health and disease. A major downside of the existing cell culture systems is that the alienating planar cell environment leads to aberrant cell-cell contacts and network formation and increased reactivity of cell culture-contaminating glial cells. To mimic a suitable 3D environment for the growth and investigation of neuronal networks in vitro has posed an insurmountable challenge. Here, we report the development of a novel electrospun, polyurethane nanofiber-based 3D cell culture system for the in vitro support of neuronal networks, in which neurons can grow freely in all directions and form network structures more complex than any culture system has so far been able to support. In this 3D system, neurons extend processes from their cell bodies as a function of the nanofiber diameter. The nanofiber scaffold also minimizes the reactive state of contaminating glial cells.
  •  
9.
  • Puschmann, Till B., et al. (author)
  • Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells
  • 2013
  • In: Glia. - : Wiley. - 0894-1491 .- 1098-1136. ; 61:3, s. 432-440
  • Journal article (peer-reviewed)abstract
    • We tested the hypothesis that astrocytes grown in a suitable three-dimensional (3D) cell culture system exhibit morphological and biochemical features of in vivo astrocytes that are otherwise lost upon transfer from the in vivo to a two-dimensional (2D) culture environment. First, we report development of a novel bioactively coated nanofiber-based 3D culture system (Bioactive3D) that supports cultures of primary mouse astrocytes. Second, we show that Bioactive3D culture system maintains the in vivo-like morphological complexity of cultured cells, allows movement of astrocyte filopodia in a way that resembles the in vivo situation, and also minimizes the cellular stress, an inherent feature of standard 2D cell culture systems. Third, we demonstrate that the expression of gap junctions is reduced in astrocytes cultured in a 3D system that supports well-organized cell-cell communication, in contrast to the enforced planar tiling of cells in a standard 2D system. Finally, we show that astrocytes cultured in the Bioactive3D system do not show the undesired baseline activation but are fully responsive to activation-inducing stimuli. Thus, astrocytes cultured in the Bioactive3D appear to more closely resemble astrocytes in vivo and represent a superior in vitro system for assessing (patho)physiological and pharmacological responses of these cells and potentially also in co-cultures of astrocytes and other cell types.
  •  
10.
  • Puschmann, Till B., et al. (author)
  • HB-EGF affects astrocyte morphology, proliferation, differentiation, and the expression of intermediate filament proteins
  • 2014
  • In: Journal of Neurochemistry. - : Wiley. - 1471-4159 .- 0022-3042. ; 128:6, s. 878-889
  • Journal article (peer-reviewed)abstract
    • Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a vascular-derived trophic factor, belongs to the epidermal growth factor (EGF) family of neuroprotective, hypoxia-inducible proteins released by astrocytes in CNS injuries. It was suggested that HB–EGF can replace fetal calf serum (FCS) in astrocyte cultures. We previously demonstrated that in contrast to standard 2D cell culture systems, Bioactive3D culture system, when used with FCS, minimizes the baseline activation of astrocytes and preserves their complex morphology. Here, we show that HB-EGF induced EGF receptor (EGFR) activation by Y1068 phosphorylation, Mapk/Erk pathway activation, and led to an increase in cell proliferation, more prominent in Bioactive3D than in 2D cultures. HB-EGF changed morphology of 2D and Bioactive3D cultured astrocytes toward a radial glia-like phenotype and induced the expression of intermediate filament and progenitor cell marker protein nestin. Glial fibrillary acidic protein (GFAP) and vimentin protein expression was unaffected. RT-qPCR analysis demonstrated that HB-EGF affected the expression of Notch signaling pathway genes, implying a role for the Notch signaling in HB-EGF-mediated astrocyte response. HB-EGF can be used as a FCS replacement for astrocyte expansion and in vitro experimentation both in 2D and Bioactive3D culture systems; however, caution should be exercised since it appears to induce partial de-differentiation of astrocytes.HB-EGF (heparin-binding EGF-like growth factor) was previously suggested to replace serum, a common and undefined component in primary astrocyte cultures. We show that both in standard 2D and in our newly developed Bioactive3D culture system, HB-EGF affects astrocyte morphology, proliferation, gene/protein expression and leads to partial de-differentiation of astrocytes. Thus, HB-EGF should only be used with caution as a serum replacement in astrocyte cultures.
  •  
11.
  • Shinjyo, Noriko, et al. (author)
  • Complement peptide C3a promotes astrocyte survival in response to ischemia.
  • 2016
  • In: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 53:5, s. 3076-87
  • Journal article (peer-reviewed)abstract
    • Astrocytes are the most numerous cells in the central nervous system with a range of homeostatic and regulatory functions. Under normal conditions as well as after ischemia, astrocytes promote neuronal survival. We have previously reported that the complement-derived peptide C3a stimulates neuronal differentiation of neural progenitor cells and protects the immature brain tissue against hypoxic-ischemic injury. Here, we studied the effects of C3a on the response of mouse cortical astrocytes to ischemia. We have found that chemical ischemia, induced by combined inhibition of oxidative phosphorylation and glycolysis, upregulates the expression of C3a receptor in cultured primary astrocytes. C3a treatment protected wild-type but not C3a receptor-deficient astrocytes from cell death induced by chemical ischemia or oxygen-glucose deprivation by reducing ERK signaling and caspase-3 activation. C3a attenuated ischemia-induced upregulation of glial fibrillary acidic protein; however, the protective effects of C3a were not dependent on the presence of the astrocyte intermediate filament system. Pre-treatment of astrocytes with C3a during recovery abrogated the ischemia-induced neuroprotective phenotype of astrocytes. Jointly, these results provide the first evidence that the complement peptide C3a modulates the response of astrocytes to ischemia and increases their ability to cope with ischemic stress.
  •  
12.
  • Vardjan, N., et al. (author)
  • IFN-gamma-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments
  • 2012
  • In: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 9:Article Number: 144
  • Journal article (peer-reviewed)abstract
    • Background: In immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-gamma (IFN-gamma) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs. Methods: The identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-gamma activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor(546)-dextran labeling of late endosomes/lysosomes in IFN-gamma treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software. Results: Confocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-gamma induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor(546)-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-gamma-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-gamma- treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-gamma-induced increase in the mobility of MHC class II compartments is IF-dependent. Conclusions: Since reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
  •  
13.
  • Viedma-Poyatos, Á, et al. (author)
  • The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization
  • 2018
  • In: Free Radical Biology & Medicine. - : Elsevier BV. - 0891-5849. ; 120, s. 380-394
  • Journal article (peer-reviewed)abstract
    • The type III intermediate filament protein glial fibrillary acidic protein (GFAP) contributes to the homeostasis of astrocytes, where it co-polymerizes with vimentin. Conversely, alterations in GFAP assembly or degradation cause intracellular aggregates linked to astrocyte dysfunction and neurological disease. Moreover, injury and inflammation elicit extensive GFAP organization and expression changes, which underline reactive gliosis. Here we have studied GFAP as a target for modification by electrophilic inflammatory mediators. We show that the GFAP cysteine, C294, is targeted by lipoxidation by cyclopentenone prostaglandins (cyPG) in vitro and in cells. Electrophilic modification of GFAP in cells leads to a striking filament rearrangement, with retraction from the cell periphery and juxtanuclear condensation in thick bundles. Importantly, the C294S mutant is resistant to cyPG addition and filament disruption, thus highlighting the critical role of this residue as a sensor of oxidative damage. However, GFAP C294S shows defective or delayed network formation in GFAP-deficient cells, including SW13/cl.2 cells and GFAP- and vimentin-deficient primary astrocytes. Moreover, GFAP C294S does not effectively integrate with and even disrupts vimentin filaments in the short-term. Interestingly, short-spacer bifunctional cysteine crosslinking produces GFAP-vimentin heterodimers, suggesting that a certain proportion of cysteine residues from both proteins are spatially close. Collectively, these results support that the conserved cysteine residue in type III intermediate filament proteins serves as an electrophilic stress sensor and structural element. Therefore, oxidative modifications of this cysteine could contribute to GFAP disruption or aggregation in pathological situations associated with oxidative or electrophilic stress. © 2018 The Authors
  •  
14.
  • Wilhelmsson, Ulrika, 1970, et al. (author)
  • Astrocytes negatively regulate neurogenesis through the Jagged1-mediated notch pathway.
  • 2012
  • In: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 30:10, s. 2320-9
  • Journal article (peer-reviewed)abstract
    • Adult neurogenesis is regulated by a number of cellular players within the neurogenic niche. Astrocytes participate actively in brain development, regulation of the mature central nervous system (CNS), and brain plasticity. They are important regulators of the local environment in adult neurogenic niches through the secretion of diffusible morphogenic factors, such as Wnts. Astrocytes control the neurogenic niche also through membrane-associated factors, however, the identity of these factors and the mechanisms involved are largely unknown. In this study, we sought to determine the mechanisms underlying our earlier finding of increased neuronal differentiation of neural progenitor cells when cocultured with astrocytes lacking glial fibrillary acidic protein (GFAP) and vimentin (GFAP(-/-) Vim(-/-) ). We used primary astrocyte and neurosphere cocultures to demonstrate that astrocytes inhibit neuronal differentiation through a cell-cell contact. GFAP(-/-) Vim(-/-) astrocytes showed reduced endocytosis of Notch ligand Jagged1, reduced Notch signaling, and increased neuronal differentiation of neurosphere cultures. This effect of GFAP(-/-) Vim(-/-) astrocytes was abrogated in the presence of immobilized Jagged1 in a manner dependent on the activity of γ-secretase. Finally, we used GFAP(-/-) Vim(-/-) mice to show that in the absence of GFAP and vimentin, hippocampal neurogenesis under basal conditions as well as after injury is increased. We conclude that astrocytes negatively regulate neurogenesis through the Notch pathway, and endocytosis of Notch ligand Jagged1 in astrocytes and Notch signaling from astrocytes to neural stem/progenitor cells depends on the intermediate filament proteins GFAP and vimentin.
  •  
15.
  • Wilhelmsson, Ulrika, 1970, et al. (author)
  • Injury leads to the appearance of cells with characteristics of both microglia and astrocytes in mouse and human brain.
  • 2017
  • In: Cerebral cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 27:6, s. 3360-3377
  • Journal article (peer-reviewed)abstract
    • Microglia and astrocytes have been considered until now as cells with very distinct identities. Here, we assessed the heterogeneity within microglia/monocyte cell population in mouse hippocampus and determined their response to injury, by using single-cell gene expression profiling of cells isolated from uninjured and deafferented hippocampus. We found that in individual cells, microglial markers Cx3cr1, Aif1, Itgam, and Cd68 were co-expressed. Interestingly, injury led to the co-expression of the astrocyte marker Gfap in a subpopulation of Cx3cr1-expressing cells from both the injured and contralesional hippocampus. Cells co-expressing astrocyte and microglia markers were also detected in the in vitro LPS activation/injury model and in sections from human brain affected by stroke, Alzheimer's disease, and Lewy body dementia. Our findings indicate that injury and chronic neurodegeneration lead to the appearance of cells that share molecular characteristics of both microglia and astrocytes, 2 cell types with distinct embryologic origin and function.
  •  
16.
  • Wilhelmsson, Ulrika, 1970, et al. (author)
  • The role of GFAP and vimentin in learning and memory
  • 2019
  • In: Biological Chemistry. - : Walter de Gruyter GmbH. - 1431-6730 .- 1437-4315. ; 400:9, s. 1147-1156
  • Journal article (peer-reviewed)abstract
    • Intermediate filaments (also termed nanofilaments) are involved in many cellular functions and play important roles in cellular responses to stress. The upregulation of glial fibrillary acidic protein (GFAP) and vimentin (Vim), intermediate filament proteins of astrocytes, is the hallmark of astrocyte activation and reactive gliosis in response to injury, ischemia or neurodegeneration. Reactive gliosis is essential for the protective role of astrocytes at acute stages of neurotrauma or ischemic stroke. However, GFAP and Vim were also linked to neural plasticity and regenerative responses in healthy and injured brain. Mice deficient for GFAP and vimentin (GFAP(-/-)Vim(-/-)) exhibit increased post-traumatic synaptic plasticity and increased basal and post-traumatic hippocampal neurogenesis. Here we assessed the locomotor and exploratory behavior of GFAP(-/-)Vim(-/-) mice, their learning, memory and memory extinction, by using the open field, object recognition and Morris water maze tests, trace fear conditioning, and by recording reversal learning in IntelliCages. While the locomotion, exploratory behavior and learning of GFAP(-/-)Vim(-/-) mice, as assessed by object recognition, the Morris water maze, and trace fear conditioning tests, were comparable to wildtype mice, GFAP(-/-)Vim(-/-) mice showed more pronounced memory extinction when tested in IntelliCages, a finding compatible with the scenario of an increased rate of reorganization of the hippocampal circuitry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view