SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(van Swieten J) "

Search: WFRF:(van Swieten J)

  • Result 1-25 of 141
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bellenguez, C, et al. (author)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Journal article (peer-reviewed)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
3.
  • Davies, G., et al. (author)
  • Genetic contributions to variation in general cognitive function : a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)
  • 2015
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 20:2, s. 183-192
  • Journal article (peer-reviewed)abstract
    • General cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health-and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of genome-wide association studies of 31 cohorts (N = 53 949) in which the participants had undertaken multiple, diverse cognitive tests. A general cognitive function phenotype was tested for, and created in each cohort by principal component analysis. We report 13 genome-wide significant single-nucleotide polymorphism (SNP) associations in three genomic regions, 6q16.1, 14q12 and 19q13.32 (best SNP and closest gene, respectively: rs10457441, P = 3.93 x 10(-9), MIR2113; rs17522122, P = 2.55 x 10(-8), AKAP6; rs10119, P = 5.67 x 10(-9), APOE/TOMM40). We report one gene-based significant association with the HMGN1 gene located on chromosome 21 (P = 1x10(-6)). These genes have previously been associated with neuropsychiatric phenotypes. Meta-analysis results are consistent with a polygenic model of inheritance. To estimate SNP-based heritability, the genome-wide complex trait analysis procedure was applied to two large cohorts, the Atherosclerosis Risk in Communities Study (N = 6617) and the Health and Retirement Study (N = 5976). The proportion of phenotypic variation accounted for by all genotyped common SNPs was 29% (s.e. = 5%) and 28% (s.e. = 7%), respectively. Using polygenic prediction analysis, similar to 1.2% of the variance in general cognitive function was predicted in the Generation Scotland cohort (N = 5487; P = 1.5 x 10(-17)). In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer's disease: TOMM40, APOE, ABCG1 and MEF2C.
  •  
4.
  • Rajewsky, N., et al. (author)
  • LifeTime and improving European healthcare through cell-based interceptive medicine
  • 2020
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7834, s. 377-386
  • Journal article (peer-reviewed)abstract
    • LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Bonham, LW, et al. (author)
  • Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10854-
  • Journal article (peer-reviewed)abstract
    • The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA’s relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.
  •  
9.
  •  
10.
  • Gao, YX, et al. (author)
  • Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis
  • 2020
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 12184-
  • Journal article (peer-reviewed)abstract
    • We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.
  •  
11.
  •  
12.
  • Quadri, Marialuisa, et al. (author)
  • LRP10 genetic variants in familial Parkinson's disease and dementia with Lewy bodies : a genome-wide linkage and sequencing study
  • 2018
  • In: The Lancet Neurology. - 1474-4422. ; 17:7, s. 597-608
  • Journal article (peer-reviewed)abstract
    • Background: Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders. Methods: Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells. Findings: Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent—albeit limited—evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism. Interpretation: Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets. Funding: Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw—Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands–Ligue Européene Contre la Maladie d'Alzheimer (LECMA).
  •  
13.
  •  
14.
  • Gallagher, Michael D., et al. (author)
  • TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
  • 2014
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 127:3, s. 407-418
  • Journal article (peer-reviewed)abstract
    • Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • Jansen, Iris E, et al. (author)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • In: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Journal article (peer-reviewed)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
20.
  • Reus, LM, et al. (author)
  • Genome-wide association study of frontotemporal dementia identifies a C9ORF72 haplotype with a median of 12-G4C2 repeats that predisposes to pathological repeat expansions
  • 2021
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1, s. 451-
  • Journal article (peer-reviewed)abstract
    • Genetic factors play a major role in frontotemporal dementia (FTD). The majority of FTD cannot be genetically explained yet and it is likely that there are still FTD risk loci to be discovered. Common variants have been identified with genome-wide association studies (GWAS), but these studies have not systematically searched for rare variants. To identify rare and new common variant FTD risk loci and provide more insight into the heritability of C9ORF72-related FTD, we performed a GWAS consisting of 354 FTD patients (including and excluding N = 28 pathological repeat carriers) and 4209 control subjects. The Haplotype Reference Consortium was used as reference panel, allowing for the imputation of rare genetic variants. Two rare genetic variants nearby C9ORF72 were strongly associated with FTD in the discovery (rs147211831: OR = 4.8, P = 9.2 × 10−9, rs117204439: OR = 4.9, P = 6.0 × 10−9) and replication analysis (P < 1.1 × 10−3). These variants also significantly associated with amyotrophic lateral sclerosis in a publicly available dataset. Using haplotype analyses in 1200 individuals, we showed that these variants tag a sub-haplotype of the founder haplotype of the repeat expansion that was previously found to be present in virtually all pathological C9ORF72 G4C2 repeat lengths. This new risk haplotype was 10 times more likely to contain a C9ORF72 pathological repeat length compared to founder haplotypes without one of the two risk variants (~22% versus ~2%; P = 7.70 × 10−58). In haplotypes without a pathologic expansion, the founder risk haplotype had a higher number of repeats (median = 12 repeats) compared to the founder haplotype without the risk variants (median = 8 repeats) (P = 2.05 × 10−260). In conclusion, the identified risk haplotype, which is carried by ~4% of all individuals, is a major risk factor for pathological repeat lengths of C9ORF72 G4C2. These findings strongly indicate that longer C9ORF72 repeats are unstable and more likely to convert to germline pathological C9ORF72 repeat expansions.
  •  
21.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
22.
  • Ferrari, Raffaele, et al. (author)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • In: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
23.
  • Diekstra, Frank P., et al. (author)
  • C9orf72 and UNC13A Are Shared Risk Loci for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia : A Genome-Wide Meta-Analysis
  • 2014
  • In: Annals of Neurology. - : John Wiley & Sons. - 0364-5134 .- 1531-8249. ; 76:1, s. 120-133
  • Journal article (peer-reviewed)abstract
    • Objective: Substantial clinical, pathological, and genetic overlap exists between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 inclusions have been found in both ALS and FTD cases (FTD-TDP). Recently, a repeat expansion in C9orf72 was identified as the causal variant in a proportion of ALS and FTD cases. We sought to identify additional evidence for a common genetic basis for the spectrum of ALS-FTD. Methods: We used published genome-wide association studies data for 4,377 ALS patients and 13,017 controls, and 435 pathology-proven FTD-TDP cases and 1,414 controls for genotype imputation. Data were analyzed in a joint meta-analysis, by replicating topmost associated hits of one disease in the other, and by using a conservative rank products analysis, allocating equal weight to ALS and FTD-TDP sample sizes. Results: Meta-analysis identified 19 genome-wide significant single nucleotide polymorphisms (SNPs) in C9orf72 on chromosome 9p21.2 (lowest p = 2.6 x 10(-12)) and 1 SNP in UNC13A on chromosome 19p13.11 (p = 1.0 x 10(-11)) as shared susceptibility loci for ALS and FTD-TDP. Conditioning on the 9p21.2 genotype increased statistical significance at UNC13A. A third signal, on chromosome 8q24.13 at the SPG8 locus coding for strumpellin (p = 3.91 x 10(-7)) was replicated in an independent cohort of 4,056 ALS patients and 3,958 controls (p = 0.026; combined analysis p = 1.01 x 10(-7)). Interpretation: We identified common genetic variants in C9orf72, but in addition in UNC13A that are shared between ALS and FTD. UNC13A provides a novel link between ALS and FTD-TDP, and identifies changes in neurotransmitter release and synaptic function as a converging mechanism in the pathogenesis of ALS and FTD-TDP.
  •  
24.
  • Manzoni, Claudia, et al. (author)
  • Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia
  • 2024
  • In: American Journal of Human Genetics. - 0002-9297. ; 111:7, s. 1316-1329
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 141

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view