SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Energiteknik) "

Search: AMNE:(TEKNIK OCH TEKNOLOGIER Maskinteknik Energiteknik)

  • Result 1-25 of 12306
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Okda, Sherif, et al. (author)
  • Testing of the Aerodynamic Characteristics of an Inflatable Airfoil Section
  • 2020
  • In: Journal of Aerospace Engineering. - 1943-5525 .- 0893-1321. ; 33:5
  • Journal article (peer-reviewed)abstract
    • Inflatable structures are characterized by being light and easy to manufacture and deploy. Hence, they find many applications in aerospace and aeronautical engineering. In this paper, an inflatable segment with a The National Advisory Committee for Aeronautics (NACA) 0021 airfoil cross-section is designed, fabricated, and tested. The geometrical accuracy of the manufactured inflatable segment is measured using laser scanning. Measurements show that the average normalized error of the chord length and thickness are 2.97% and 0.554%, respectively. The aerodynamic behavior of the inflatable segment is then tested in a wind tunnel at different wind speeds and angles of attack. Lift forces are measured using a six-component balance, while the drag forces are calculated from the wake measurements. The lift and drag coefficients of the inflatable section are compared to those of a standard NACA 0021 airfoil. Finally, flow visualization is examined at different angles of attack using two methods: smoke and tufts. Both methods show that flow separation starts at 15° and full stall occurs at 25°. Results indicate that inflatables can find more applications in the design and construction of aerodynamic structures, such as wings.
  •  
3.
  • Binder, Christian, 1988-, et al. (author)
  • Phosphor Thermometry for In-Cylinder Surface Temperature Measurements in Diesel Engines
  • 2019
  • In: Measurement science and technology. - 0957-0233 .- 1361-6501.
  • Journal article (other academic/artistic)abstract
    • Surface temperature measurements in technically relevant applications can be very  hallenging and yet of great importance. Phosphor thermometry is a temperature measurement technique that has previously been employed in technically relevant applications to obtain surface temperature. The technique is based on temperature-dependent changes in a phosphor’s luminescence. To improve the accuracy and precision of temperature measurements with this technique, the present study considers, by way of example, the impact of conditions inside the cylinder of a diesel engine on decay time based phosphor thermometry. After an initial, general assessment of the effect of prevailing measurement conditions, this research investigates errors caused by soot luminosity, extinction, signal trapping and changes of phosphors’ luminescence properties due to exposure to the harsh environment. Furthermore, preferable properties of phosphors which are suitable for in-cylinder temperature measurements are discussed. 16 phosphors are evaluated, including four which – to the authors’ knowledge –have previously not been used in thermometry. Results indicate that errors due to photocathode bleaching, extinction, signal trapping and changes of luminescence properties may cause an erroneous temperature evaluation with temperature errors in the order of serval tens of Kelvin.
  •  
4.
  • Wadekar, Sandip, 1989 (author)
  • Large-Eddy Simulation of Gasoline Fuel Spray Injection at Ultra-High Injection Pressures
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • Gasoline direct injection is a state-of-the-art technique that reduces hydrocarbon and particulate emissions. However, further improvement is needed to meet current as well as future emission regulations. A prominent solution is to increase the fuel injection pressure which allows faster fuel droplet atomization, quick evaporation and improves fuel-air mixture formation under realistic engine conditions. In this work, the gasoline fuel injection process at ultra-high injection pressures ranging from 200 to 1500 bar was analyzed using numerical models. In particular, the Large-Eddy Simulation (LES) method, with the standard Smagorinsky turbulence model, was utilized using the Eulerian formulation  for the continuous phase. The discrete droplet phase was treated using a Lagrangian formulation together with spray sub-models. In the first part of study, spray was injected into an initially quiescent constant volume chamber using two different nozzle hole shape geometries: divergent and convergent. The numerical results were calibrated by reproducing experimentally observed liquid penetration length and efforts were made to understand the influence of ultra-high injection pressures on spray development. The calibrated models were then used to investigate the impact of ultra-high injection pressures on mean droplet sizes, droplet size distribution, spray-induced large-scale eddies and entrainment rate. The results showed that, at ultra-high injection pressures, the mean droplet sizes were significantly reduced and the droplets achieving very high  velocities. Integral length scales of spray-induced turbulence and air entrainment rate were better for the divergent-shaped injector, and considerably larger at higher injection pressures compared to lower ones. In the second part of the study, four consecutive full-cycle cold flow LES simulations were carried out to generate realistic turbulence inside the engine cylinder. The first three cycles were ignored, with the fourth cycle being used to model the injection of the fuel using the divergent-shaped injector only (which was found to be better in the previous part of this study) at different injection pressures. In addition to the continuous gas phase (Eulerian) and the dispersed liquid (Lagrangian), the liquid film feature (Finite-Area) was used to model the impingement of fuel spray on the engine walls and subsequent liquid film formation. The simulation results were used to evaluate spray-induced turbulence, fuel-air mixing efficiency and the amount of liquid mass deposited on the walls. The limitation of the high-pressure injection technique with respect to liquid film formation was optimized using a start of injection (SOI) sweep. Overall results showed that the mixing efficiency increased at high injection pressure and that SOI should occur between early injection and late injection to optimize the amount of mass being deposited on the engine walls.
  •  
5.
  • Lejon, Marcus, 1986, et al. (author)
  • Multidisciplinary Design of a Three Stage High Speed Booster
  • 2017
  • In: ASME Turbo Expo 2017: Turbine Technical Conference and Exposition. - : ASME Press. ; 2B-2017
  • Conference paper (peer-reviewed)abstract
    • The paper describes a multidisciplinary conceptual design of an axial compressor, targeting a three stage, high speed, high efficiency booster with a design pressure ratio of 2.8. The paper is outlined in a step wise manner starting from basic aircraft and engine thrust requirements, establishing the definition of the high speed booster interface points and its location in the engine. Thereafter, the aerodynamic 1D/2D design is carried out using the commercial throughflow tool SC90C. A number of design aspects are described, and the steps necessary to arrive at the final design are outlined. The SC90C based design is then carried over to a CFD based conceptual design tool AxCent, in which a first profiling is carried out based on a multiple circular arc blade definition. The design obtained at this point is referred to as the VINK compressor. The first stage of the compressor is then optimized using an in-house optimization tool, where the objective functions are evaluated from detailed CFD calculations. The design is improved in terms of efficiency and in terms of meeting the design criteria put on the stage in the earlier design phases. Finally, some aeromechanical design aspects of the first stage are considered. The geometry and inlet boundary conditions of the compressor are shared with the turbomachinery community on a public server. This is intended to be used as a test case for further optimization and analysis.
  •  
6.
  •  
7.
  • Etikyala, Sreelekha, 1991 (author)
  • Particulate Formation in GDI Engines
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • The need to comply with stringent emission regulations while improving fuel economy and reducing criteria pollutant emissions from transportation presents a major challenge in the design of gasoline Direct Injection (DI) engines because of the adverse effects of ultrafine Particulate Number (PN) emissions on human health and other environmental concerns. With upcoming advances in vehicle electrification, it may be the case that electric vehicles completely replace all current vehicles powered by internal combustion engines ensuring zero emissions. In the meantime, Gasoline Direct Injection (GDI) engines have become the primary mode of transportation using gasoline as they offer better fuel economy while also providing low CO2 emissions. However, GDI engines tend to produce relatively high PN emissions when compared to conventional Port Fuel Injection (PFI) engines, largely because of challenges associated with in-cylinder liquid fuel injection. Cold-starts, transients, and high load operation generate a disproportionate share of PN emissions from GDI engines over a certification cycle. The mechanisms of PN formation during these stages must therefore be understood to identify solutions that reduce overall PN emissions in order to comply with increasingly strict emissions standards. This work presents experimental studies on particulate emissions from a naturally aspirated single cylinder metal gasoline engine run in a homogeneous configuration. The engine was adapted to enable operation in both DI and PFI modes. In PFI mode, injection was performed through a custom inlet manifold about 50 cm from the cylinder head to maximize the homogeneity of the fuel-air mixture. The metal head was eventually modified by incorporating an endoscope that made it possible to visualize the combustion process inside the cylinder. The experimental campaigns were structured to systematically isolate and clarify PN formation mechanisms. Tests were initially performed in steady state mode to obtain preliminary insights and to screen operating conditions before conducting transient tests. Particulate emissions were measured and correlated with the images obtained through endoscope visualization where possible. Key objectives of these studies were to find ways of reducing PN formation by increasing combustion stability. It was found that by avoiding conditions that cause wall wetting with liquid fuel, PN emissions can be substantially reduced during both steady state operation and transients. Warming the coolant and injecting fuel at later timings reduced PN emissions during warmup and cold transient conditions. Additionally, experiments using fuel blends with different oxygenate contents showed that the chemical composition of the fuel strongly influences particulate formation under steady state and transient conditions, and that this effect is load-dependent. Overall, the results obtained in this work indicate that wall wetting is the dominant cause of particulate formation inside the cylinder and that fuel-wall interactions involving the piston, cylinder walls, and valves during fuel injection account for a significant proportion of PN emissions in the engine raw exhaust.
  •  
8.
  • Li, Xiaojian, 1991, et al. (author)
  • Installation effects on engine design
  • 2020
  • Conference paper (other academic/artistic)abstract
    • Increasing the engine bypass ratio is one way to improve propulsive efficiency. However, an increase in the bypass ratio (BPR) has usually been associated with an increase in the fan diameter. Consequently, there can be a notable increase in the impact of the engine installation on the overall aircraft performance. In order to achieve a better balance between those factors, it requires novel nacelle and engine design concepts. This report mainly reviews installation effects on engine design. Firstly, the installation effects assessment methods are introduced. Then, the installation effects on engine cycle design, intake design and exhaust design are sequentially reviewed.
  •  
9.
  • Tillig, Fabian, 1984, et al. (author)
  • Design, operation and analysis of wind-assisted cargo ships
  • 2020
  • In: Ocean Engineering. - : Elsevier BV. - 0029-8018. ; 211:1, s. 1-23
  • Journal article (peer-reviewed)abstract
    • This study presents a novel approach to analytically capture aero- and hydrodynamic interaction effects on wind-assisted ships. Low aspect ratio wing theory is applied and modified to be used for the prediction of lift and drag forces of hulls sailing at drift angles. Aerodynamic interaction effects are captured by analytically solving the Navier-Stokes equation for incompressible, potential flow. The developed methods are implemented to a 4 degrees-of-freedom performance prediction model called “ShipCLEAN”, including a newly developed method for rpm control of Flettner rotors on a ship to maximize fuel savings. The accuracy of the model is proven by model- and full-scale verification. To present the variability of the model, two case study ships, a tanker and a RoRo, are equipped with a total of 11 different arrangements of Flettner rotors. The fuel savings and payback times are assessed using realistic weather from ships traveling on a Pacific Ocean route (tanker) and Baltic Sea route (RoRo). The results verify the importance of using a 4 degrees-of-freedom ship performance model, aero- and hydrodynamic interaction and the importance of controlling the rpm of each rotor individually. Fuel savings of 30% are achieved for the tanker, and 14% are achieved for the RoRo.
  •  
10.
  • Kyprianidis, Konstantinos, 1984, et al. (author)
  • Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
  • 2014
  • In: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 136:1
  • Journal article (peer-reviewed)abstract
    • The reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption, along with the reduction of engine nacelle drag and weight. One alternative design approach to improving specific fuel consumption is to consider a geared fan combined with an increased overall pressure ratio intercooled core performance cycle. The thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is very little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. With minimum mission fuel in mind, the results indicate as optimal values a pressure ratio split exponent of 0.38 and an intercooler mass flow ratio of 1.18 at hot-day top of climb conditions. At ISA midcruise conditions a specific thrust of 86 m/s, a jet velocity ratio of 0.83, an intercooler effectiveness of 56%, and an overall pressure ratio value of 76 are likely to be a good choice. A 70,000 lbf intercooled turbofan engine is large enough to make efficient use of an all-axial compression system, particularly within a geared fan configuration, but intercooling is perhaps more likely to be applied to even larger engines. The proposed optimal jet velocity ratio is actually higher than the value one would expect by using standard analytical expressions, primarily because this design variable affects core efficiency at midcruise due to a combination of several different subtle changes to the core cycle and core component efficiencies at this condition. The analytical expressions do not consider changes in core efficiency and the beneficial effect of intercooling on transfer efficiency, nor do they account for losses in the bypass duct and jet pipe, while a relatively detailed engine performance model, such as the one utilized in this study, does. Mission fuel results from a surrogate model are in good agreement with the results obtained from a rubberized-wing aircraft model for some of the design parameters. This indicates that it is possible to replace an aircraft model with specific fuel consumption and weight penalty exchange rates. Nevertheless, drag count exchange rates have to be utilized to properly assess changes in mission fuel for those design parameters that affect nacelle diameter.
  •  
11.
  • Thulin, Oskar, 1987, et al. (author)
  • First and Second Law Analysis of Radical Intercooling Concepts
  • 2018
  • In: Journal of Engineering for Gas Turbines and Power. - : ASME International. - 1528-8919 .- 0742-4795. ; 140:8, s. 081201-081201-10
  • Journal article (peer-reviewed)abstract
    • An exergy framework was developed taking into consideration a detailed analysis of the heat exchanger (HEX) (intercooler (IC)) component irreversibilities. Moreover, it was further extended to include an adequate formulation for closed systems, e.g., a secondary cycle (SC), moving with the aircraft. Afterward, the proposed framework was employed to study two radical intercooling concepts. The first proposed concept uses already available wetted surfaces, i.e., nacelle surfaces, to reject the core heat and contributes to an overall drag reduction. The second concept uses the rejected core heat to power a secondary organic Rankine cycle and produces useful power to the aircraft-engine system. Both radical concepts are integrated into a high bypass ratio (BPR) turbofan engine, with technology levels assumed to be available by year 2025. A reference intercooled cycle incorporating a HEX in the bypass (BP) duct is established for comparison. Results indicate that the radical intercooling concepts studied in this paper show similar performance levels to the reference cycle. This is mainly due to higher irreversibility rates created during the heat exchange process. A detailed assessment of the irreversibility contributors, including the considered HEXs and SC, is made. A striking strength of the present analysis is the assessment of the component-level irreversibility rate and its contribution to the overall aero-engine losses.
  •  
12.
  • Thulin, Oskar, 1987 (author)
  • On the Analysis of Energy Efficient Aircraft Engines
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Aero engine performance analysis is highly multidimensional using various measures of component performance such as turbomachinery and mechanical efficiencies, and pressure loss coefficients. Using conventional performance analysis, relying on only the laws of thermodynamics, it is possible to understand how the performance parameters affect the component performance, but it is difficult to directly compare the magnitude of various loss sources. A comprehensive framework has been detailed to analyze aero engine loss sources in one common currency. As the common currency yields a measure of the lost work potential in every component, it is used to relate the component performance to the system performance. The theory includes a more detailed layout of all the terms that apply to a propulsion unit than presented before. The framework is here adopted to real gases to be used in state of the art performance codes. Additionally, the framework is further developed to enable detailed studies of two radical intercooling concepts that either rejects the core heat in the outer nacelle surfaces or uses the core heat for powering of a secondary cycle. The theory is also extended upon by presenting the installed rational efficiency, a true measure of the propulsion subsystem performance, including the installation effects of the propulsion subsystem as it adds weight and drag that needs to be compensated for in the performance assessment.
  •  
13.
  • Ström, Henrik, 1981, et al. (author)
  • Behaviour and stability of the two-fluid model for fine-scale simulations of bubbly flow in nuclear reactors
  • 2015
  • In: International Journal of Chemical Reactor Engineering. - : Walter de Gruyter GmbH. - 1542-6580 .- 2194-5748. ; 13:4, s. 449-459
  • Journal article (peer-reviewed)abstract
    • In the present work, we formulate a simplistic two-fluid model for bubbly steam-water flow existing between fuel pins in nuclear fuel assemblies. Numerical simulations are performed in periodic 2D domains of varying sizes. The appearance of a non-uniform volume fraction field in the form of meso-scales is investigated and shown to be varying with the bubble loading and the domain size, as well as with the numerical algorithm employed. These findings highlight the difficulties involved in interpreting the occurrence of instabilities in two-fluid simulations of gas-liquid flows, where physical and unphysical instabilities are prone to be confounded. The results obtained in this work therefore contribute to a rigorous foundation in on-going efforts to derive a consistent meso-scale formulation of the traditional two-fluid model for multiphase flows in nuclear reactors.
  •  
14.
  • El-Gabry, Lamyaa, et al. (author)
  • Measurements of Hub Flow Interaction on Film Cooled Nozzle Guide Vane in Transonic Annular Cascade
  • 2015
  • In: Journal of turbomachinery. - : ASME International. - 0889-504X .- 1528-8900. ; 137:8
  • Journal article (peer-reviewed)abstract
    • An experimental study has been performed in a transonic annular sector cascade of nozzle guide vanes (NGVs) to investigate the aerodynamic performance and the interaction between hub film cooling and mainstream flow. The focus of the study is on the endwalls, specifically the interaction between the hub film cooling and the mainstream. Carbon dioxide (CO2) has been supplied to the coolant holes to serve as tracer gas. Measurements of CO2 concentration downstream of the vane trailing edge (TE) can be used to visualize the mixing of the coolant flow with the mainstream. Flow field measurements are performed in the downstream plane with a five-hole probe to characterize the aerodynamics in the vane. Results are presented for the fully cooled and partially cooled vane (only hub cooling) configurations. Data presented at the downstream plane include concentration contour, axial vorticity, velocity vectors, and yaw and pitch angles. From these investigations, secondary flow structures such as the horseshoe vortex, passage vortex, can be identified and show the cooling flow significantly impacts the secondary flow and downstream flow field. The results suggest that there is a region on the pressure side (PS) of the vane TE where the coolant concentrations are very low suggesting that the cooling air introduced at the platform upstream of the leading edge (LE) does not reach the PS endwall, potentially creating a local hotspot.
  •  
15.
  • Saha, Ranjan, 1984-, et al. (author)
  • Aerodynamic Investigation of External Cooling and Applicability of Superposition
  • 2015
  • In: 11th EUROPEAN CONFERENCE ON TURBOMACHINERY FLUID DYNAMICS AND THERMODYNAMICS. - : EUROPEAN TURBOMACHINERY SOC-EUROTURBO.
  • Conference paper (other academic/artistic)abstract
    • An experimental investigation of the overall external cooling on a cooled nozzle guide vanehas been conducted in a transonic annular sector cascade. The investigated vane is a typicaltransonic high pressure gas turbine vane, geometrically similar to a real engine component.The investigations are performed for various coolant-to-mainstream mass-flux ratios. Resultsindicate that the aerodynamic loss is influenced substantially with the change of the coolingflow. Area-averaged exit flow angles in midspan region are unaffected at moderate filmcoolant flows, for all cooling configurations except for trailing edge cooling. The trailing edgecooling decreases the turning in all investigated cases. Results lead to a conclusion that bothtrailing edge and suction side cooling have significant influence on the aerodynamic losswhereas the shower head cooling is less sensitive to the loss. Investigations with individualcooling features essentially lead to the applicability of the superposition technique regardingthe aerodynamic loss for film cooled vanes, which is this paper’s contribution to the researchfield. Results show that the superposition technique can be used for the profile loss but not forthe secondary loss.
  •  
16.
  • Saha, Ranjan, 1984- (author)
  • Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage. Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses. The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced. The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations.
  •  
17.
  • Saha, Ranjan, 1984-, et al. (author)
  • Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance
  • 2014
  • In: ASME Turbo Expo 2014. - : ASME Press. - 9780791845622
  • Conference paper (peer-reviewed)abstract
    • An experimental investigation on a cooled nozzle guide vane has been conducted in an annular sector to quantify aerodynamic influences of shower head and trailing edge cooling. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at a reference exit Mach number of 0.89. The investigations have been performed for various coolant-to-mainstream mass-flux ratios. New loss equations are derived and implemented regarding coolant aerodynamic losses. Results lead to a conclusion that both trailing edge cooling and shower head film cooling increase the aerodynamic loss compared to an uncooled case. In addition, the trailing edge cooling has higher aerodynamic loss compared to the shower head cooling. Secondary losses decrease with inserting shower head film cooling compared to the uncooled case. The trailing edge cooling appears to have less impact on the secondary loss compared to the shower head cooling. Area-averaged exit flow angles around midspan increase for the trailing edge cooling.
  •  
18.
  • Saha, Ranjan, 1984-, et al. (author)
  • Shower Head and Trailing Edge Cooling Influence on Transonic Vane Aero Performance
  • 2014
  • In: Journal of turbomachinery. - : ASME Press. - 0889-504X .- 1528-8900. ; 136:11, s. 111001-
  • Journal article (peer-reviewed)abstract
    • An experimental investigation on a cooled nozzle guide vane (NGV) has been conducted in an annular sector to quantify aerodynamic influences of shower head (SH) and trailing edge (TE) cooling. The investigated vane is a typical high pressure gas turbine vane, geometrically similar to a real engine component, operated at a reference exit Mach number of 0.89. The investigations have been performed for various coolant-to-mainstream mass-flux ratios. New loss equations are derived and implemented regarding coolant aerodynamic losses. Results lead to a conclusion that both TE cooling and SH film cooling increase the aerodynamic loss compared to an uncooled case. In addition, the TE cooling has higher aerodynamic loss compared to the SH cooling. Secondary losses decrease with inserting SH film cooling compared to the uncooled case. The TE cooling appears to have less impact on the secondary loss compared to the SH cooling. Area-averaged exit flow angles around midspan increase for the TE cooling.
  •  
19.
  • Svanberg, Martin, 1982, et al. (author)
  • Analyzing animal waste-to-energy supply chains: The case of horse manure
  • 2018
  • In: Renewable Energy. - : Elsevier BV. - 0960-1481 .- 1879-0682. ; 129, s. 830-837
  • Journal article (peer-reviewed)abstract
    • To reduce human impact upon the environment, a transition from fossil to renewable energy sources such as biomass is imperative. Biomass from animal waste such as horse manure has unutilized potential as it has yet to be implemented at a large scale as an energy source. Research has demonstrated the technical feasibility of using animal waste for energy conversion, though their supply chain cost poses a barrier, as does a gap in research regarding the specific design of efficient horse manure-to-energy supply chains. In response, we investigated the design of horse manure-to-energy supply chains through interviews and site visits at stables, as well as through interviews with transport companies. Our findings show that horse manure-to-energy supply chains have distinct attributes at all stages of the supply chain such as the geographical spread of stables that determines supply chain design and hampers efficiency. They share several such attributes with forest biomass-to-energy supply chains, from which important needs can be identified, including the industrial development of trucks dedicated to the purpose, mathematical modeling to handle the trade-off of cost of substance loss in storage and cost of transport, and business models that reconcile the conflicting goals of different actors along the supply chains. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
20.
  • Dahlqvist, Johan (author)
  • Cavity Purge Flows in High Pressure Turbines
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Turbomachinery forms the principal prime mover in the energy and aviation industries. Due to its size, improvements to this fleet of machines have the potential of significant impact on global emissions. Due to high gas temperatures in stationary gas turbines and jet engines, areas of flow mixing and cooling are identified to benefit from continued research. Here, sensitive areas are cooled through cold air injection, but with the cost of power to compress the coolant to appropriate pressure. Further, the injection itself reduces output due to mixing losses.A turbine testing facility is center to the study, allowing measurement of cooling impact on a rotating low degree of reaction high pressure axial turbine. General performance, flow details, and cooling performance is quantified by output torque, pneumatic probes, and gas concentration measurement respectively. The methodology of simultaneously investigating the beneficial cooling and the detrimental mixing is aimed at the cavity purge flow, used to purge the wheelspace upstream of the rotor from hot main flow gas.Results show the tradeoff between turbine efficiency and cooling performance, with an efficiency penalty of 1.2 %-points for each percentage point of massflow ratio of purge. The simultaneous cooling effectiveness increase is about 40 %-points, and local impact on flow parameters downstream of the rotor is of the order of 2° altered turning and a Mach number delta of 0.01. It has also been showed that flow bypassing the rotor blading may be beneficial for cooling downstream.The results may be used to design turbines with less cooling. Detrimental effects of the remaining cooling may be minimized with the flow field knowledge. Stage performance is then optimized aerodynamically, mixing losses are reduced, and the cycle output is maximized due to the reduced compression work. The combination may be used to provide a significant benefit to the turbomachinery industry and reduced associated emissions.
  •  
21.
  • Dahlqvist, Johan, 1987-, et al. (author)
  • TEST TURBINE INSTRUMENTATION FOR CAVITY PURGE INVESTIGATIONS
  • 2014
  • In: The XXII Symposium on Measuring Techniques in Turbomachinery, Lyon, 4-5 September 2014.
  • Conference paper (other academic/artistic)abstract
    • The upstream wheelspace of the KTH Test Turbine has been instrumented with the aim of investigating cavity flow phenomena, as well as cavity-main annulus interaction. Measurements include static pressure, unsteady pressure and temperature.The stage used is of high pressure steam turbine design. The trials include investigating the design point and also a high pressure, high speed operating point, assimilating gas turbine operation. At each point, varying amounts of purge flow are superposed and the influences on the measurements studied.Initial results show considerable dependence of both operating
  •  
22.
  • Johansson, Anders, 1985, et al. (author)
  • Experimental Investigation of the Influence of Boost on Combustion and Particulate Emissions in Optical and Metal SGDI-Engines Operated in Stratified Mode
  • 2016
  • In: SAE International Journal of Engines. - : SAE International. - 1946-3944 .- 1946-3936. ; 9:2, s. 807-818
  • Journal article (peer-reviewed)abstract
    • Boosting and stratified operation can be used to increase the fuel efficiency of modern gasoline direct-injected (GDI) engines. In modern downsized GDI engines, boosting is standard to achieve a high power output. However, boosted GDI-engines have mostly been operated in homogenous mode and little is known about the effects of operating a boosted GDI-engine in stratified mode.This study employed optical and metal engines to examine how boosting influences combustion and particulate emission formation in a spray-guided GDI (SGDI), single cylinder research engine. The setup of the optical and metal engines was identical except the optical engine allowed optical access through the piston and cylinder liner.The engines were operated in steady state mode at five different engine operating points representing various loads and speeds. The engines were boosted with compressed air and operated at three levels of boost, as well as atmospheric pressure for comparison. The fuel used was market gasoline (95 RON) blended with 10% ethanol. The spark plug and injector were mounted in parallel with the intake valves. The gas motion induced by the engine head was primarily tumble motion with a small amount of swirl.Results on particulate emissions indicated that nucleation mode particulates increased with increasing boost. In contrast, agglomeration mode particulates decreased with increasing boost pressure. The combustion was found to consist of a yellow flame in the center of the combustion chamber and a pre-mixed blue flame in the perimeter. The optical studies indicated that the flame area decreased with increasing boost.
  •  
23.
  • Jeong, Seung Hee, 1978- (author)
  • Soft Intelligence : Liquids Matter in Compliant Microsystems
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Soft matter, here, liquids and polymers, have adaptability to a surrounding geometry. They intrinsically have advantageous characteristics from a mechanical perspective, such as flowing and wetting on surrounding surfaces, giving compliant, conformal and deformable behavior. From the behavior of soft matter for heterogeneous surfaces, compliant structures can be engineered as embedded liquid microstructures or patterned liquid microsystems for emerging compliant microsystems.Recently, skin electronics and soft robotics have been initiated as potential applications that can provide soft interfaces and interactions for a human-machine interface. To meet the design parameters, developing soft material engineering aimed at tuning material properties and smart processing techniques proper to them are to be highly encouraged. As promising candidates, Ga-based liquid alloys and silicone-based elastomers have been widely applied to proof-of-concept compliant structures.In this thesis, the liquid alloy was employed as a soft and stretchable electrical and thermal conductor (resistor), interconnect and filler in an elastomer structure. Printing-based liquid alloy patterning techniques have been developed with a batch-type, parallel processing scheme. As a simple solution, tape transfer masking was combined with a liquid alloy spraying technique, which provides robust processability. Silicone elastomers could be tunable for multi-functional building blocks by liquid or liquid-like soft solid inclusions. The liquid alloy and a polymer additive were introduced to the silicone elastomer by a simple mixing process. Heterogeneous material microstructures in elastomer networks successfully changed mechanical, thermal and surface properties.To realize a compliant microsystem, these ideas have in practice been useful in designing and fabricating soft and stretchable systems. Many different designs of the microsystems have been fabricated with the developed techniques and materials, and successfully evaluated under dynamic conditions. The compliant microsystems work as basic components to build up a whole system with soft materials and a processing technology for our emerging society.
  •  
24.
  • Ottersten, Martin, 1981, et al. (author)
  • Inlet Gap Influence on Low-Frequency Flow Unsteadiness in a Centrifugal Fan
  • 2022
  • In: Aerospace. - : MDPI AG. - 2226-4310. ; 9:12
  • Journal article (peer-reviewed)abstract
    • In this study, unsteady low-frequency characteristics in a voluteless low-speed centrifugal fan operating at a high mass flow rate are studied with improved delayed detached eddy simulation (IDDES). This study is motivated by a recent finding that the non-uniformly distributed pressure inside this type of fan could be alleviated by improving the gap geometry. The present simulation results show that the velocity magnitudes of the gap have distinct low and high regions. Intensive turbulent structures are developed in the low-velocity regions and are swept downstream along the intersection between the blade and shroud, on the pressure side of the blade. Eventually, the turbulence gives rise to a high-pressure region near the blade’s trailing edge. This unsteady flow behavior revolves around the fan rotation axis. Additionally, its period is 5% of the fan rotation speed, based on the analysis of the time history of the gap velocity magnitudes and the evolution of the high-pressure region. The same frequency of high pressure was also found in previous experimental measurements. To the authors’ knowledge, this is the first time that the trigger of the gap turbulence, i.e., the unsteady local low velocity, has been determined.
  •  
25.
  • Hadadpour, Ahmad (author)
  • Spray combustion with multiple-injection in modern engine conditions
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Combustion of fuel in diesel engines emits substances harmful to the environment such as soot. These emissions can be reduced by either in-cylinder treatments or after-treatments. One of the common in-cylinder treatments is multiple-injection, which divides a single fuel injection to multiple smaller injections. There are many open questions on the physical processes of the ignition, combustion and emissions of diesel spray flame with multiple injections. The current PhD project aims at studying these processes using large-eddy simulations (LES) and strives to answer some of the open questions. To develop a fast and robust LES tool for this study, a new method is formulated for spray combustion simulation. This method is developed based on the flamelet-generated manifold (FGM) method and the Eulerian stochastic fields (ESF) method. The new ESF/FGM method relaxes some of the substantial assumptions in conventional FGM, while it still keeps the computational costs at a reasonable level for engineering applications. Additionally in this work, a new reaction progress variable for FGM models is proposed by using local oxygen consumption, and the advantages and limitations of this progress variable are explored. Spray-A from Engine Combustion Network (ECN) which is designed to mimic modern engine conditions is chosen as the baseline case for simulations. In this case, liquid n-dodecane, which is a diesel surrogate, is injected into a high-pressure constant-volume vessel. The comparison of simulation results with experimental measurements shows that the ESF/FGM method with the new progress variable can predict the spray combustion characteristics such as ignition delay time, ignition location, lift-off length, pressure rise and thermochemical structure of the spray flame, accurately. After validation of simulation results against experimental measurements, the new ESF/FGM and other available turbulence-combustion simulation tools are applied to simulate multiple-injection spray combustion. Different multiple-injection strategies are investigated by systematically changing the injection timing. The effects of applying each strategy on the ignition, combustion, mixing and emissions are investigated. The results show that in split-injection and post-injection strategies the major physical reason for reduction of soot is better air entrainment and lower local equivalence ratio. It is shown that increasing the dwell time and retarding it toward the end of injection can enhance this effect. On the contrary, for the pre-injection strategies, shortening the ignition delay time of the main injection reduces its pre-mixing and increases its soot formation. In these strategies, the high-temperature region from the pre-injection combustion can increase soot oxidation of the main injection fuel, only if this region is not cooled down as a result of air entrainment during dwell time. Therefore, in such cases shortening the dwell time decreases net soot emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 12306
Type of publication
journal article (6345)
conference paper (3629)
doctoral thesis (550)
reports (543)
licentiate thesis (366)
book chapter (316)
show more...
research review (228)
other publication (174)
book (54)
patent (42)
editorial proceedings (33)
editorial collection (22)
review (4)
artistic work (3)
show less...
Type of content
peer-reviewed (9667)
other academic/artistic (2485)
pop. science, debate, etc. (154)
Author/Editor
Sundén, Bengt (838)
Leckner, Bo G, 1936 (264)
Ji, Xiaoyan (244)
Johnsson, Filip, 196 ... (216)
Yan, Jinyue, 1959- (199)
Yan, Jinyue (182)
show more...
Li, Hailong, 1976- (181)
Fransson, Torsten (180)
Öhman, Marcus (169)
Lyngfelt, Anders, 19 ... (165)
Yuan, Jinliang (144)
Zhang, Xingxing (144)
Bollen, Math (139)
Lu, Xiaohua (133)
Mattisson, Tobias, 1 ... (132)
Xie, Gongnan (127)
Palm, Björn (119)
Thunman, Henrik, 197 ... (115)
Kyprianidis, Konstan ... (108)
Laumert, Björn (107)
Zhu, Bin (104)
Bai, Xue-Song (104)
Ma, Weimin (103)
Umeki, Kentaro (102)
Andersson, Martin (101)
Harvey, Simon, 1965 (100)
Normann, Fredrik, 19 ... (100)
Andersson, Klas, 197 ... (99)
Kudinov, Pavel (99)
Wu, Zan (98)
Åmand, Lars-Erik, 19 ... (97)
Boström, Dan (95)
Tunestål, Per (93)
Pallarès, David, 197 ... (90)
Anglart, Henryk (86)
Dahl, Jan (84)
Aldén, Marcus (81)
Yang, Weihong (81)
Lundgren, Joakim (81)
Gebart, Rikard (80)
Wang, Lei (78)
Skoglund, Nils (77)
Li, Zhongshan (77)
Rydén, Magnus, 1975 (76)
Bechta, Sevostian (74)
Tunér, Martin (73)
Grip, Carl-Erik (73)
Boman, Christoffer (70)
Berntsson, Thore, 19 ... (69)
Bales, Chris (69)
show less...
University
Royal Institute of Technology (3414)
Chalmers University of Technology (3040)
Lund University (2089)
Luleå University of Technology (1648)
Mälardalen University (1084)
RISE (449)
show more...
Uppsala University (427)
Högskolan Dalarna (399)
Umeå University (323)
University of Gävle (269)
Linköping University (199)
Halmstad University (180)
Karlstad University (124)
Linnaeus University (110)
Swedish University of Agricultural Sciences (80)
Stockholm University (72)
University of Gothenburg (69)
University of Borås (61)
Jönköping University (36)
IVL Swedish Environmental Research Institute (30)
Mid Sweden University (29)
University West (21)
Malmö University (18)
VTI - The Swedish National Road and Transport Research Institute (15)
Örebro University (14)
University of Skövde (11)
Blekinge Institute of Technology (11)
Karolinska Institutet (6)
Kristianstad University College (3)
Swedish Environmental Protection Agency (1)
show less...
Language
English (11830)
Swedish (412)
Chinese (18)
Russian (12)
Persian (11)
French (5)
show more...
German (4)
Spanish (4)
Norwegian (2)
Portuguese (2)
Japanese (2)
Italian (1)
Undefined language (1)
Finnish (1)
Polish (1)
show less...
Research subject (UKÄ/SCB)
Engineering and Technology (12306)
Natural sciences (1066)
Social Sciences (186)
Agricultural Sciences (67)
Medical and Health Sciences (22)
Humanities (11)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view