SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0022 538X OR L773:1098 5514 "

Search: L773:0022 538X OR L773:1098 5514

  • Result 1-50 of 477
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agback, Peter, et al. (author)
  • NAP1L1 and NAP1L4 Binding to Hypervariable Domain of Chikungunya Virus nsP3 Protein Is Bivalent and Requires Phosphorylation
  • 2021
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 95
  • Journal article (peer-reviewed)abstract
    • Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication.IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.
  •  
2.
  • Agback, Tatiana, et al. (author)
  • Structural and Functional Characterization of Host FHL1 Protein Interaction with Hypervariable Domain of Chikungunya Virus nsP3 Protein
  • 2021
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 95
  • Journal article (peer-reviewed)abstract
    • Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1or both FHL1and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMRbased structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.
  •  
3.
  • Allain, J. P., et al. (author)
  • Evolutionary rate and genetic drift of hepatitis C virus are not correlated with the host immune response : Studies of infected donor-recipient clusters
  • 2000
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:6, s. 2541-2549
  • Journal article (peer-reviewed)abstract
    • Six donor-recipient clusters of hepatitis C virus (HCV)-infected individuals were studied. For five clusters the period of infection of the donor could be estimated, and for all six clusters the time of infection of the recipients from the donor via blood transfusion was also precisely known. Detailed phylogenetic analyses were carried out to investigate the genomic evolution of the viral quasispecies within infected individuals in each cluster. The molecular clock analysis showed that HCV quasispecies within a patient are evolving at the same rate and that donors that have been infected for longer time tend to have a lower evolutionary rate. Phylogenetic analysis based on the split decomposition method revealed different evolutionary patterns in different donor-recipient clusters. Reactivity of antibody against the first hypervariable region (HVR1) of HCV in donor and recipient sera was evaluated and correlated to the calculated evolutionary rate. Results indicate that anti-HVR1 reactivity was related more to the overall level of humoral immune response of the host than to the HVR1 sequence itself, suggesting that the particular sequence of the HVR1 peptides is not the determinant of reactivity. Moreover, no correlation was found between the evolutionary rate or the heterogeneity of the viral quasispecies in the patients and the strength of the immune response to HVR1 epitopes, Rather, the results seem to imply that genetic drift is less dependent on immune pressure than on the rate of evolution and that the genetic drift of HCV is independent of the host immune pressure.
  •  
4.
  • Andersson, I., et al. (author)
  • Human MxA Protein Inhibits the Replication of Crimean-Congo Hemorrhagic Fever Virus
  • 2004
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 78:8, s. 4323-4329
  • Journal article (peer-reviewed)abstract
    • Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members of the Bunyaviridae family, but the effect of MxA against CCHFV has not previously been studied. Here, we report that human MxA has antiviral activity against CCHFV. The yield of progeny virus in cells constitutively expressing MxA was reduced up to 1,000-fold compared with control cells, and accumulation of viral genomes was blocked. Confocal microscopy revealed that MxA colocalizes with the nucleocapsid protein (NP) of CCHFV in the perinuclear regions of infected cells. Furthermore, we found that MxA interacted with NP by using a coimmunoprecipitation assay. We also found that an amino acid substitution (E645R) within the C-terminal domain of MxA resulted in a loss of MxA antiviral activity and, concomitantly, in the capacity to interact with CCHFV NP. These results suggest that MxA, by interacting with a component of the nucleocapsid, prevents replication of CCHFV viral RNA and thereby inhibits the production of new infectious virus particles.
  •  
5.
  •  
6.
  •  
7.
  • Arnberg, Niklas, et al. (author)
  • Adenovirus type 37 uses sialic acid as a cellular receptor
  • 2000
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:1, s. 42-48
  • Journal article (peer-reviewed)abstract
    • Two cellular receptors for adenovirus, coxsackievirus-adenovirus receptor (CAR) and major histocompatibility complex class I (MHC-I) alpha2, have recently been identified. In the absence of CAR, MHC-I alpha2 has been suggested to serve as a cellular attachment protein for subgenus C adenoviruses, while members from all subgenera except subgenus B have been shown to interact with CAR. We have found that adenovirus type 37 (Ad37) attachment to CAR-expressing CHO cells was no better than that to CHO cells lacking CAR expression, suggesting that CAR is not used by Ad37 during attachment. Instead, we have identified sialic acid as a third adenovirus receptor moiety. First, Ad37 attachment to both CAR-expressing CHO cells and MHC-I alpha2-expressing Daudi cells was sensitive to neuraminidase treatment, which eliminates sialic acid on the cell surface. Second, Ad37 attachment to sialic acid-expressing Pro-5 cells was more than 10-fold stronger than that to the Pro-5 subline Lec2, which is deficient in sialic acid expression. Third, neuraminidase treatment of A549 cells caused a 60% decrease in Ad37 replication in a fluorescent-focus assay. Moreover, the receptor sialoconjugate is most probably a glycoprotein rather than a ganglioside, since Ad37 attachment to sialic acid-expressing Pro-5 cells was sensitive to protease treatment. Ad37 attachment to Pro-5 cells occurs via alpha(2-->3)-linked sialic acid saccharides rather than alpha(2-->6)-linked ones, since (i) alpha(2-->3)-specific but not alpha(2-->6)-specific lectins blocked Ad37 attachment to Pro-5 cells and (ii) pretreatment of Pro-5 cells with alpha(2-->3)-specific neuraminidase resulted in decreased Ad37 binding. Taken together, these results suggest that, unlike Ad5, Ad37 makes use of alpha(2-->3)-linked sialic acid saccharides on glycoproteins for entry instead of using CAR or MHC-I alpha2.
  •  
8.
  • Arnberg, Niklas, et al. (author)
  • Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells
  • 2002
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 76:17, s. 8834-8841
  • Journal article (peer-reviewed)abstract
    • Epidemic keratoconjunctivitis (EKC) is a severe eye infection caused mainly by adenovirus type 8 (Ad8), Ad19, and Ad37. We have shown that the EKC-causing adenoviruses use sialic acid as a cellular receptor on A549 cells instead of the coxsackie-adenovirus receptor, which is used by most adenoviruses. Recently, Wu et al. (Virology 279:78-89, 2001) proposed that Ad37 uses a 50-kDa protein as a receptor on Chang C conjunctival cells and that this interaction is independent of sialic acid. According to the American Type Culture Collection, this cell line carries HeLa cell markers and should be considered to be a genital cell line. This prompted us to investigate the function of sialic acid as a cellular receptor for Ad37 in Chang C cells. In this study, we demonstrate that enzymatic removal or lectin-mediated blocking of cell surface sialic acid inhibits the binding of Ad37 virions to Chang C cells, as does soluble, virion-interacting sialic acid-containing substances. The binding was Ca2+ or Mg2+ ion independent and mediated by the knob domain of the trimeric viral fiber polypeptide. Moreover, Ad37 virions infected Chang C cells and two other genital cell lines (HeLa and SiHa) as well as a corneal cell line in a strictly sialic acid-dependent manner. From these results, we conclude that Ad37 uses sialic acid as a major receptor in cell lines derived from both genital and corneal tissues.
  •  
9.
  • Arnberg, Niklas, et al. (author)
  • Initial interactions of subgenus D adenoviruses with A549 cellular receptors : sialic acid versus alpha(v) integrins
  • 2000
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:16, s. 7691-3
  • Journal article (peer-reviewed)abstract
    • Selected members of the adenovirus family have been shown to interact with the coxsackie adenovirus receptor, alpha(v) integrins, and sialic acid on target cells. Initial interactions of subgenus D adenoviruses with target cells have until now been poorly characterized. Here, we demonstrate that adenovirus type 8 (Ad8), Ad19a, and Ad37 use sialic acid as a functional cellular receptor, whereas the Ad9 and Ad19 prototypes do not.
  •  
10.
  • Ashokkumar, M., et al. (author)
  • Unique phenotypic characteristics of recently transmitted HIV-1 subtype C envelope glycoprotein gp120 : Use of CXCR6 coreceptor by transmitted founder viruses
  • 2018
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 92:9
  • Journal article (peer-reviewed)abstract
    • Adequate information on the precise molecular and biological composition of the viral strains that establish HIV infection in the human host will provide effective means of immunization against HIV infection. In an attempt to identify the transmitted founder (TF) virus and differentiate the biological properties and infectious potential of the TF virus from those of the population of the early transmitted viruses, 250 patient-derived gp120 envelope glycoproteins were cloned in pMN-K7- Luc-IRESs-NefΔgp120 to obtain chimeric viruses. Samples were obtained from eight infants who had recently become infected with HIV through mother-to-child transmission (MTCT) and two adults who acquired infection through the heterosexual route and were in the chronic stage of infection. Among the 250 clones tested, 65 chimeric viruses were infectious, and all belonged to HIV-1 subtype C. The 65 clones were analyzed for molecular features of the envelope, per-infectious-particle infectivity, coreceptor tropism, drug sensitivity, and sensitivity to broadly neutralizing antibodies. Based on genotypic and phenotypic analysis of the viral clones, we identified 10 TF viruses from the eight infants. The TF viruses were characterized by shorter V1V2 regions, a reduced number of potential N-linked glycosylation sites, and a higher infectivity titer compared to the virus variants from the adults in the chronic stage of infection. CXCR6 coreceptor usage, in addition to that of the CCR5 coreceptor, which was used by all 65 chimeric viruses, was identified in 13 viruses. The sensitivity of the TF variants to maraviroc and a standard panel of neutralizing monoclonal antibodies (VRC01, PG09, PG16, and PGT121) was found to be much lower than that of the virus variants from the adults in the chronic stage of infection.
  •  
11.
  • Bálint, Adám, et al. (author)
  • Molecular Characterization of Feline Infectious Peritonitis Virus Strain DF-2 and Studies of the Role of ORF3abc in Viral Cell Tropism
  • 2012
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 86, s. 6258-6267
  • Journal article (peer-reviewed)abstract
    • The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log(10) titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV.
  •  
12.
  • Ballmann, Mónika Z., et al. (author)
  • Human AdV-20-42-42, a promising novel adenoviral vector for gene therapy and vaccine product development
  • 2021
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 95:22
  • Journal article (peer-reviewed)abstract
    • Preexisting immune responses toward adenoviral vectors limit the use of a vector based on particular serotypes and its clinical applicability for gene therapy and/or vaccination. Therefore, there is a significant interest in vectorizing novel adenoviral types that have low seroprevalence in the human population. Here, we describe the discovery and vectorization of a chimeric human adenovirus, which we call HAdV-20-42-42. Full-genome sequencing revealed that this virus is closely related to human serotype 42, except for the penton base, which is derived from serotype 20. The HAdV-20-42-42 vector could be propagated stably to high titers on existing E1-complementing packaging cell lines. Receptor-binding studies revealed that the vector utilized both CAR and CD46 as receptors for cell entry. Furthermore, the HAdV-20-42-42 vector was potent in transducing human and murine cardiovascular cells and tissues, irrespective of the presence of blood coagulation factor X. In vivo characterizations demonstrate that when delivered intravenously (i.v.) in mice, HAdV-20-42-42 mainly targeted the lungs, liver, and spleen and triggered robust inflammatory immune responses. Finally, we demonstrate that potent T-cell responses against vector-delivered antigens could be induced upon intramuscular vaccination in mice. In summary, from the data obtained we conclude that HAdV-20-42-42 provides a valuable addition to the portfolio of adenoviral vectors available to develop efficacious products in the fields of gene therapy and vaccination.
  •  
13.
  • Barrenäs, Fredrik, et al. (author)
  • Deep Transcriptional Sequencing of Mucosal Challenge Compartment from Rhesus Macaques Acutely Infected with Simian Immunodeficiency Virus Implicates Loss of Cell Adhesion Preceding Immune Activation
  • 2014
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 88:14, s. 7962-7972
  • Journal article (peer-reviewed)abstract
    • Pathology resulting from human immunodeficiency virus (HIV) infection is driven by protracted inflammation; the primary loss of CD4(+) T cells is caused by activation-driven apoptosis. Recent studies of nonhuman primates (NHPs) have suggested that during the acute phase of infection, antiviral mucosal immunity restricts viral replication in the primary infection compartment. These studies imply that HIV achieves systemic infection as a consequence of a failure in host antiviral immunity. Here, we used high-dose intrarectal inoculation of rhesus macaques with simian immunodeficiency virus (SIV) SIVmac251 to examine how the mucosal immune system is overcome by SIV during acute infection. The host response in rectal mucosa was characterized by deep mRNA sequencing (mRNA-seq) at 3 and 12 days postinoculation (dpi) in 4 animals for each time point. While we observed a strong host transcriptional response at 3 dpi, functions relating to antiviral immunity were absent. Instead, we observed a significant number of differentially expressed genes relating to cell adhesion and reorganization of the cytoskeleton. We also observed downregulation of genes encoding members of the claudin family of cell adhesion molecules, which are coexpressed with genes associated with pathology in the colorectal mucosa, and a large number of noncoding transcripts. In contrast, at 12 dpi the differentially expressed genes were enriched in those involved with immune system functions, in particular, functions relating to T cells, B cells, and NK cells. Our findings indicate that host responses that negatively affect mucosal integrity occur before inflammation. Consequently, when inflammation is activated at peak viremia, mucosal integrity is already compromised, potentially enabling rapid tissue damage, driving further inflammation. IMPORTANCE The HIV pandemic is one of the major threats to human health, causing over a million deaths per year. Recent studies have suggested that mucosal antiviral immune responses play an important role in preventing systemic infection after exposure to the virus. Yet, despite their potential role in decreasing transmission rates between individuals, these antiviral mechanisms are poorly understood. Here, we carried out the first deep mRNA sequencing analysis of mucosal host responses in the primary infection compartment during acute SIV infection. We found that during acute infection, a significant host response was mounted in the mucosa before inflammation was triggered. Our analysis indicated that the response has a detrimental effect on tissue integrity, causing increased permeability, tissue damage, and recruitment of SIV target cells. These results emphasize the importance of mucosal host responses preceding immune activation in preventing systemic SIV infection.
  •  
14.
  • Becker, Miriam, et al. (author)
  • Efficient clathrin-mediated entry of enteric adenoviruses in human duodenal cells
  • 2023
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 97:10
  • Journal article (peer-reviewed)abstract
    • Enteric adenovirus types F40 and 41 (EAdVs) are a leading cause of diarrhea and diarrhea-associated death in young children and have recently been proposed to cause acute hepatitis in children. EAdVs have a unique capsid architecture and exhibit — unlike other human adenoviruses — a relatively strict tropism for gastrointestinal tissues with, to date, understudied infection mechanism and unknown target cells. In this study, we turn to potentially limiting host factors by comparing EAdV entry in cell lines with respiratory and intestinal origin by cellular perturbation, virus particle tracking, and transmission electron microscopy. Our analyses highlight kinetic advantages for EAdVs in duodenal HuTu80 cell infection and reveal a larger fraction of mobile particles, faster virus uptake, and infectious particle entry in intestinal cells. Moreover, EAdVs display a dependence on clathrin- and dynamin-dependent pathways in intestinal cells. Detailed knowledge of virus entry routes and host factor requirements is essential to understanding pathogenesis and developing new countermeasures. Hence, this study provides novel insights into the entry mechanisms of a medically important virus with emerging tropism in a cell line originating from a relevant tissue. IMPORTANCE Enteric adenoviruses have historically been difficult to grow in cell culture, which has resulted in lack of knowledge of host factors and pathways required for infection of these medically relevant viruses. Previous studies in non-intestinal cell lines showed slow infection kinetics and generated comparatively low virus yields compared to other adenovirus types. We suggest duodenum-derived HuTu80 cells as a superior cell line for studies to complement efforts using complex intestinal tissue models. We show that viral host cell factors required for virus entry differ between cell lines from distinct origins and demonstrate the importance of clathrin-mediated endocytosis.
  •  
15.
  • Bergqvist, Anders, et al. (author)
  • Altered susceptibility to tumor necrosis factor alpha-induced apoptosis of mouse cells expressing polyomavirus middle and small T antigens
  • 1997
  • In: Journal of Virology. - : ASM. - 0022-538X .- 1098-5514. ; 71:1, s. 276-283
  • Journal article (peer-reviewed)abstract
    • Infection with some virus types induces susceptibility to the cytotoxic effect of tumor necrosis factor alpha (TNF-alpha). To investigate whether expression of polyomavirus proteins has this effect on cells, the TNF-alpha sensitivity of C127 and L929 mouse cells transfected with viral DNA was analyzed. Expression of all three polyomavirus early proteins, the tumor (T) antigens, had no apparent effect. In contrast, middle T antigen by itself induced hypersensitivity to TNF-alpha. This effect was reversed by retransfection of the cells with DNA encoding small T antigen. Expression of this polypeptide also decreased the sensitivity of bovine papillomavirus type 1-transformed cells to TNF- alpha, showing that the protective function of the polyomavirus small T antigen was not strictly linked to a middle-T-antigen-induced event. Mouse and human TNF-alpha had the same effect on normal and transformed mouse cells, suggesting that this effect was mediated by TNF receptor 1. Consistent with this conclusion, all cell clones used in the experiments expressed TNF receptor 1 at similar levels, while we failed to detect TNF receptor 2. The amount of receptor on the cells was not influenced by binding of the ligand. Addition of TNF-alpha at cytotoxic concentrations to cells expressing middle T antigen by itself resulted in significant fragmentation of chromosomal DNA after only a few hours, indicating induction of apoptosis. Addition of the cytokine to these cells also leads to release of arachidonic acid, showing that phospholipase A2 was activated. However, production of arachidonic acid did not appear to significantly precede loss of cell viability.
  •  
16.
  • Bergqvist, Anders, et al. (author)
  • Transcriptional activation of the interleukin-2 promoter by hepatitis C virus core protein
  • 2001
  • In: Journal of Virology. - : ASM. - 0022-538X .- 1098-5514. ; 75:2, s. 772-781
  • Journal article (peer-reviewed)abstract
    • Most patients infected with hepatitis C virus (HCV) become chronic carriers. Viruses that efficiently establish persistent infections must have effective ways of evading host defenses. In the case of HCV, little is known about how chronic infections are established or maintained. Besides hepatocytes, several reports suggest that HCV can infect T and B lymphocytes. Since T cells are essential for viral clearance, direct or indirect effects of HCV on T-cell function could influence the outcome of infection. Given that T-cell growth and differentiation require the cytokine interleukin 2 (IL-2), we asked whether HCV might modulate synthesis of IL-2. Portions of the HCV polyprotein were expressed in Jurkat cells under a variety of conditions. We found that the highly conserved HCV core protein, in combination with other stimuli, was able to dramatically activate transcription from the IL-2 promoter. The carboxy-terminal hydrophobic portion of the core protein was required for this activity. Activation was dependent on nuclear factor of activated T cells (NFAT), occurred in cells deficient in the tyrosine kinase p56lck, and could be blocked by addition of cyclosporin A and by depletion of calcium. These results suggest that the HCV core protein can activate transcription of the IL-2 promoter through the NFAT pathway. This novel activity may have consequences for T-cell development and establishment of persistent infections.
  •  
17.
  • Bondesson, M, et al. (author)
  • Adenovirus E4 open reading frame 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter
  • 1996
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 70:6, s. 3844-6851
  • Journal article (peer-reviewed)abstract
    • Here we show that the adenovirus early region 4 (E4) open reading frame 4 (ORF4) protein autoregulates its own transcription by inhibiting adenovirus E1A-induced activation of E4 transcription both in transient transfection experiments and during lytic virus growth. The inhibitory activity of E4-ORF4 was selective for E1A-CR3-dependent transactivation and had no effect on CR1 transactivation. The inhibitory activity of E4-ORF4 was relieved by okadaic acid treatment, which inhibits the cellular protein phosphatase 2A (PP2A), suggesting that E4-ORF4 controls the phosphorylated status of transcription factors important for E4 promoter activity. This conclusion agrees with previous demonstrations that E4-ORF4 associates with PP2A and causes a partial dephosphorylation of certain transcription factors, including E1A (U. Müller, T. Kleinberger, and T. Shenk, J. Virol. 66:5869-5878, 1992; T. Kleinberger and T. Shenk, J. Virol. 67:7556-7560, 1993). However, our results indicate that dephosphorylation of E1A itself might not be the primary target for E4-ORF4. Instead, the E4-ORF4-PP2A complex appears to work by dephosphorylation of multiple cellular transcription factors that are involved in E1A transactivation of the E4 promoter.
  •  
18.
  • Bourgeois, C, et al. (author)
  • Heparin-like structures on respiratory syncytial virus are involved in its infectivity in vitro.
  • 1998
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 72:9, s. 7221-7227
  • Journal article (peer-reviewed)abstract
    • Addition of heparin to the virus culture inhibited syncytial plaque formation due to respiratory syncytial virus (RSV). Moreover, pretreatment of the virus with heparinase or an inhibitor of heparin, protamine, greatly reduced virus infectivity. Two anti-heparan sulfate antibodies stained RSV-infected cells, but not noninfected cells, by immunofluorescence. One of the antibodies was capable of neutralizing RSV infection in vitro. These results prove that heparin-like structures identified on RSV play a major role in early stages of infection. The RSV G protein is the attachment protein. Both anti-heparan sulfate antibodies specifically bound to this protein. Enzymatic digestion of polysaccharides in the G protein reduced the binding, which indicates that heparin-like structures are on the G protein. Such oligosaccharides may therefore participate in the attachment of the virus.
  •  
19.
  • Bowen, C. D., et al. (author)
  • Comparison of Herpes Simplex Virus 1 Strains Circulating in Finland Demonstrates the Uncoupling of Whole-Genome Relatedness and Phenotypic Outcomes of Viral Infection
  • 2019
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 93:8
  • Journal article (peer-reviewed)abstract
    • A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a lack of sequenced genomes from the Nordic countries. Finland's history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here, we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting historical waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a distinct set of phenotypes in cell culture, including differences in the amount of virus production, extracellular virus release, and cell-type-specific fitness. Importantly, the phylogenetic clusters were not predictive of any detectable pattern in phenotypic differences, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups can contain the same genetic variations. IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences.
  •  
20.
  • Bridge, Eileen, et al. (author)
  • Dynamic organization of splicing factors in adenovirus-infected cells
  • 1995
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 69:1, s. 281-290
  • Journal article (peer-reviewed)abstract
    • Adenovirus infection affects the nuclear distribution of host splicing factors. Late phase-infected cells contain discrete clusters of small nuclear ribonucleoproteins (snRNPs) that are separate from centers containing the viral 72-kilodalton DNA-binding protein (72K protein). In the present study, we demonstrate that these snRNP clusters also contain splicing factors from the SR protein family. We show that a previously described monoclonal antibody, 3C5, detects SR proteins. Furthermore, we demonstrate that late region 3 transcription occurs at a maximal rate in infected cultures in which greater than 90% of the cells contain the snRNP clusters, indicating that such cells are actively transcribing their late genes. During the onset of the late phase, the intranuclear distribution of splicing factors is very different from that seen after the late phase is established. When late viral transcription commences, cells with snRNP clusters are less prevalent than in cultures that are maintaining maximum levels of late transcription. Instead, a cell type which shows snRNPs, concentrated in foci that also contain the viral 72K DNA-binding protein is detected. This cell type disappears from cultures by 18 to 20 h after a high-multiplicity infection. These results suggest a dynamic organization of splicing factors in infected cells that can be correlated to the status of viral gene expression. Our work also provides an explanation for the differing results that have been published concerning the organization of splicing factors in the adenovirus-infected cell nucleus (L. F. Jiménez-García and D. L. Spector, Cell 73:47-59, 1993). During the present study we observed that a monoclonal antibody against the SC-35 protein, which was used by Jiménez-García and Spector to study the localization of the SC-35 splicing factor in adenovirus-infected cells, cross-reacts with the adenovirus 72K DNA-binding protein and is thus unsuitable for this type of study.
  •  
21.
  • Burmeister, Wim P, et al. (author)
  • Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites
  • 2004
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 78:14, s. 7727-7736
  • Journal article (peer-reviewed)abstract
    • Adenovirus serotype 37 (Ad37) belongs to species D and can cause epidemic keratoconjunctivitis, whereas the closely related Ad19p does not. Primary cell attachment by adenoviruses is mediated through receptor binding of the knob domain of the fiber protein. The knobs of Ad37 and Ad19p differ at only two positions, Lys240Glu and Asn340Asp. We report the high-resolution crystal structures of the Ad37 and Ad19p knobs, both native and in complex with sialic acid, which has been proposed as a receptor for Ad37. Overall, the Ad37 and Ad19p knobs are very similar to previously reported knob structures, especially to that of Ad5, which binds the coxsackievirus-adenovirus receptor (CAR). Ad37 and Ad19p knobs are structurally identical with the exception of the changed side chains and are structurally most similar to CAR-binding knobs (e.g., that of Ad5) rather than non-CAR-binding knobs (e.g., that of Ad3). The two mutations in Ad19p result in a partial loss of the exceptionally high positive surface charge of the Ad37 knob but do not affect sialic acid binding. This site is located on the top of the trimer and binds both alpha(2,3) and alpha(2,6)-linked sialyl-lactose, although only the sialic acid residue makes direct contact. Amino acid alignment suggests that the sialic acid binding site is conserved in several species D serotypes. Our results show that the altered viral tropism and cell binding of Ad19p relative to those of Ad37 are not explained by a different binding ability toward sialyl-lactose.
  •  
22.
  • Clo, E., et al. (author)
  • Characterization of the Viral O-Glycopeptidome: a Novel Tool of Relevance for Vaccine Design and Serodiagnosis
  • 2012
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 86:11, s. 6268-6278
  • Journal article (peer-reviewed)abstract
    • Viral envelope proteins mediate interactions with host cells, leading to internalization and intracellular propagation. Envelope proteins are glycosylated and are known to serve important functions in masking host immunity to viral glycoproteins. However, the viral infectious cycle in cells may also lead to aberrant glycosylation that may elicit immunity. Our knowledge of immunity to aberrant viral glycans and glycoproteins is limited, potentially due to technical limitations in identifying immunogenic glycans and glycopeptide epitopes. This work describes three different complementary methods for high-throughput screening and identification of potential immunodominant O-glycopeptide epitopes on viral envelope glycoproteins: (i) on-chip enzymatic glycosylation of scan peptides, (ii) chemical glycopeptide microarray synthesis, and (iii) a one-bead-one-compound random glycopeptide library. We used herpes simplex virus type 2 (HSV-2) as a model system and identified a simple O-glycopeptide pan-epitope, (501)PPA(GalNAc)TAPG(507), on the mature gG-2 glycoprotein that was broadly recognized by IgG antibodies in HSV-2-infected individuals but not in HSV-1-infected or noninfected individuals. Serum reactivity to the extended sialyl-T glycoform was tolerated, suggesting that self glycans can participate in immune responses. The methods presented provide new insight into viral immunity and new targets for immunodiagnostic and therapeutic measures.
  •  
23.
  • Connolly-Andersen, AM, et al. (author)
  • Basolateral entry and release of Crimean-Congo hemorrhagic fever virus in polarized MDCK-1 cells
  • 2007
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 81:5, s. 2158-2164
  • Journal article (peer-reviewed)abstract
    • Crimean-Congo hemorrhagic fever virus (CCHFV) is an etiological agent of a disease with mortality rates in patients averaging 30%. The disease is characterized by fever, myalgia, and hemorrhage. Mechanisms underlying the hemorrhage have to our knowledge not been elucidated for CCHFV. Possibly, a direct or indirect viral effect on tight junctions (TJ) could cause the hemorrhage observed in patients, as TJ play a crucial role in vascular homeostasis and can cause leakage upon deregulation. Moreover, there is no knowledge regarding the site of entry and release of CCHFV in polarized epithelial cells. Such cells represent a barrier to virus dissemination within the host, and as a site of viral entry and release, they could play a key role in further spread. For the first time, we have shown preferential basolateral entry of CCHFV in Madin-Darby canine kidney 1 (MDCK-1) epithelial cells. Furthermore, we demonstrated basolateral release of CCHFV in polarized epithelial cells. Interestingly, by measuring transepithelial electrical resistance, we found no effect of CCHFV replication on the function of TJ in this study. Neither did we observe any difference in the localization of the TJ proteins ZO-1 and occludin in CCHFV-infected cells compared to mock-infected cells. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
  •  
24.
  • Crisci, E., et al. (author)
  • Complement Opsonization Promotes Herpes Simplex Virus 2 Infection of Human Dendritic Cells
  • 2016
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 90:10, s. 4939-4950
  • Journal article (peer-reviewed)abstract
    • Herpes simplex virus 2 (HSV-2) is one of the most common sexually transmitted infections globally, with a very high prevalence in many countries. During HSV-2 infection, viral particles become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of immune responses. In genital mucosa, the primary target cells for HSV-2 infection are epithelial cells, but resident immune cells, such as dendritic cells (DCs), are also infected. DCs are the activators of the ensuing immune responses directed against HSV-2, and the aim of this study was to examine the effects opsonization of HSV-2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV-2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV-2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV-1- or HSV-2-specific antibodies more or less abolished HSV-2 infection of DCs. Our results clearly demonstrate the importance of studying HSV-2 infection under conditions that ensue in vivo, i.e., conditions under which the virions are covered in complement fragments and complement fragments and antibodies, as these shape the infection and the subsequent immune response and need to be further elucidated. During HSV-2 infection, viral particles should become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of the immune responses. The dendritic cells are activators of the immune responses directed against HSV-2, and the aim of this study was to examine the effects of complement alone or complement and antibodies on HSV-2 infection of dendritic cells and their ability to mount inflammatory and antiviral responses. Our results demonstrate that the presence of antibodies and complement in the genital environment can influence HSV-2 infection under in vitro conditions that reflect the in vivo situation. We believe that our findings are highly relevant for the understanding of HSV-2 pathogenesis.
  •  
25.
  • Crisci, Elisa, et al. (author)
  • Complement opsonization promotes HSV-2 infection of human dendritic cells
  • 2016
  • In: Journal of Virology. - : American society of microbiology. - 0022-538X .- 1098-5514. ; 90:10, s. 4939-4950
  • Journal article (peer-reviewed)abstract
    • Herpes virus type 2 (HSV2) is one of the most common sexually transmitted infections globally with a very high prevalence in many countries. During HSV2 infection viral particles become coated with complement proteins and antibodies, both existent in the genital fluids, which could influence the activation of the immune responses. In genital mucosa, the primary target cells for HSV2 infection are epithelial cells, but resident immune cells such as dendritic cells (DCs) are also infected. The DCs are the activators of the ensuing immune responses directed against HSV2, and the aim of this study was to examine the effects opsonization of HSV2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV1 or HSV2 specific antibodies more or less abolished the HSV2 infection of DCs.Our results clearly demonstrate the importance of studying HSV2 infection under conditions that ensue in vivo, i.e. when the virions are covered in complement fragments and complement fragments and antibodies, as this will shape the infection and the subsequent immune response and needs to be further elucidated.IMPORTANCE: During HSV2 infection viral particles should become coated with complement proteins and antibodies, both existent in the genital fluids, which could influence the activation of the immune responses. The dendritic cells are the activators of the immune responses directed against HSV2, and the aim of this study was to examine the effects of complement alone or complement and antibodies, on the HSV2 infection of dendritic cells and their ability to mount inflammatory and antiviral responses.Our results demonstrate that the presence of antibodies and complement in the genital environment can influence HSV2 infection under in vitro conditions that reflect the in vivo situation. We believe that our findings are highly relevant for the understanding of HSV2 pathogenesis.
  •  
26.
  • Cupelli, Karolina, et al. (author)
  • Structure of adenovirus type 21 knob in complex with CD46 reveals key differences in receptor contacts among species B adenoviruses
  • 2010
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 84:7, s. 3189-3200
  • Journal article (peer-reviewed)abstract
    • The complement regulation protein CD46 is the primary attachment receptor for most species B adenoviruses (Ads). However, significant variability exists in sequence and structure among species B Ads in the CD46-binding regions, correlating with differences in affinity. Here, we report a structure-function analysis of the interaction of the species B Ad21 knob with the two N-terminal repeats SCR1 and SCR2 of CD46, CD46-D2. We have determined the structures of the Ad21 knob in its unliganded form as well as in complex with CD46-D2, and we compare the interactions with those observed for the Ad11 knob-CD46-D2 complex. Surface plasmon resonance measurements demonstrate that the affinity of Ad21 knobs for CD46-D2 is 22-fold lower than that of the Ad11 knob. The superposition of the Ad21 and Ad11 knob structures in complex with CD46-D2 reveals a substantially different binding mode, providing an explanation for the weaker binding affinity of the Ad21 knob for its receptor. A critical difference in both complex structures is that a key interaction point, the DG loop, protrudes more in the Ad21 knob than in the Ad11 knob. Therefore, the protruding DG loop does not allow CD46-D2 to approach the core of the Ad21 knob as closely as in the Ad11 knob-CD46-D2 complex. In addition, the engagement of CD46-D2 induces a conformational change in the DG loop in the Ad21 knob but not in the Ad11 knob. Our results contribute to a more profound understanding of the CD46-binding mechanism of species B Ads and have relevance for the design of more efficient gene delivery vectors.
  •  
27.
  • da Silva, Diogo V., et al. (author)
  • The Influenza Virus Neuraminidase Protein Transmembrane and Head Domains Have Coevolved
  • 2015
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 89:2, s. 1094-1104
  • Journal article (peer-reviewed)abstract
    • Transmembrane domains (TMDs) from single-spanning membrane proteins are commonly viewed as membrane anchors for functional domains. Influenza virus neuraminidase (NA) exemplifies this concept, as it retains enzymatic function upon proteolytic release from the membrane. However, the subtype 1 NA TMDs have become increasingly more polar in human strains since 1918, which suggests that selection pressure exists on this domain. Here, we investigated the N1 TMD-head domain relationship by exchanging a prototypical old TMD (1933) with a recent (2009), more polar TMD and an engineered hydrophobic TMD. Each exchange altered the TMD association, decreased the NA folding efficiency, and significantly reduced viral budding and replication at 37 degrees C compared to at 33 degrees C, at which NA folds more efficiently. Passaging the chimera viruses at 37 degrees C restored the NA folding efficiency, viral budding, and infectivity by selecting for NA TMD mutations that correspond with their polar or hydrophobic assembly properties. These results demonstrate that single-spanning membrane protein TMDs can influence distal domain folding, as well as membrane-related processes, and suggest the NA TMD in H1N1 viruses has become more polar to maintain compatibility with the evolving enzymatic head domain. IMPORTANCE The neuranainidase (NA) protein from influenza A viruses (IAVs) functions to promote viral release and is one of the major surface antigens. The receptor-destroying activity in NA resides in the distal head domain that is linked to the viral membrane by an N-terminal hydrophobic transmembrane domain (TMD). Over the last century, the subtype 1 NA TMDs (N1) in human H1N1 viruses have become increasingly more polar, and the head domains have changed to alter their antigenicity. Here, we provide the first evidence that an old N1 head domain from 1933 is incompatible with a recent (2009), more polar N1 TMD sequence and that, during viral replication, the head domain drives the selection of TMD mutations. These mutations modify the intrinsic TMD assembly to restore the head domain folding compatibility and the resultant budding deficiency. This likely explains why the N1 TMDs have become more polar and suggests the N1 TMD and head domain have coevolved.
  •  
28.
  • Dai, Meiling, et al. (author)
  • Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins
  • 2016
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 90:20, s. 9457-9470
  • Journal article (peer-reviewed)abstract
    • Influenza A virus (IAV) attachment to and release from sialoside receptors is determined by the balance between hemagglutinin (HA) and neuraminidase (NA). The molecular determinants that mediate the specificity and activity of NA are still poorly understood. In this study, we aimed to design the optimal recombinant soluble NA protein to identify residues that affect NA enzymatic activity. To this end, recombinant soluble versions of four different NA proteins from H5N1 viruses were compared with their full-length counterparts. The soluble NA ectodomains were fused to three commonly used tetramerization domains. Our results indicate that the particular oligomerization domain used does not affect the K-m value but may affect the specific enzymatic activity. This particularly holds true when the stalk domain is included and for NA ectodomains that display a low intrinsic ability to oligomerize. NA ectodomains extended with a Tetrabrachion domain, which forms a nearly parallel four-helix bundle, better mimicked the enzymatic properties of full-length proteins than when other coiled-coil tetramerization domains were used, which probably distort the stalk domain. Comparison of different NA proteins and mutagenic analysis of recombinant soluble versions thereof resulted in the identification of several residues that affected oligomerization of the NA head domain (position 95) and therefore the specific activity or sialic acid binding affinity (K-m value; positions 252 and 347). This study demonstrates the potential of using recombinant soluble NA proteins to reveal determinants of NA assembly and enzymatic activity. IMPORTANCE The IAV HA and NA glycoproteins are important determinants of host tropism and pathogenicity. However, NA is relatively understudied compared to HA. Analysis of soluble versions of these glycoproteins is an attractive way to study their activities, as they are easily purified from cell culture media and applied in downstream assays. In the present study, we analyzed the enzymatic activity of different NA ectodomains with three commonly used tetramerization domains and compared them with fulllength NA proteins. By performing a mutagenic analysis, we identified several residues that affected NA assembly, activity, and/or substrate binding. In addition, our results indicate that the design of the recombinant soluble NA protein, including the particular tetramerization domain, is an important determinant for maintaining the enzymatic properties within the head domain. NA ectodomains extended with a Tetrabrachion domain better mimicked the full-length proteins than when the other tetramerization domains were used.
  •  
29.
  • de Rozìeres, Sohela, et al. (author)
  • Replication properties of clade A/C chimeric feline immunodeficiency viruses and evaluation of infection kinetics in the domestic cat.
  • 2008
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 82:16, s. 7953-63
  • Journal article (peer-reviewed)abstract
    • Feline immunodeficiency virus (FIV) causes progressive immunodeficiency in domestic cats, with clinical course dependent on virus strain. For example, clade A FIV-PPR is predominantly neurotropic and causes a mild disease in the periphery, whereas clade C FIV-C36 causes fulminant disease with CD4(+) T-cell depletion and neutropenia but no significant pathology in the central nervous system. In order to map pathogenic determinants, chimeric viruses were prepared between FIV-C36 and FIV-PPR, with reciprocal exchanges involving (i) the 3' halves of the viruses, including the Vif, OrfA, and Env genes; (ii) the 5' end extending from the 5' long terminal repeat (LTR) to the beginning of the capsid (CA)-coding region; and (iii) the 3' LTR and Rev2-coding regions. Ex vivo replication rates and in vivo replication and pathologies were then assessed and compared to those of the parental viruses. The results show that FIV-C36 replicates ex vivo and in vivo to levels approximately 20-fold greater than those of FIV-PPR. None of the chimeric FIVs recapitulated the replication rate of FIV-C36, although most replicated to levels similar to those of FIV-PPR. The rates of chloramphenicol acetyltransferase gene transcription driven by the FIV-C36 and FIV-PPR LTRs were identical. Furthermore, the ratios of surface glycoprotein (SU) to capsid protein (CA) in the released particles were essentially the same in the wild-type and chimeric FIVs. Tests were performed in vivo on the wild-type FIVs and chimeras carrying the 3' half of FIV-C36 or the 3' LTR and Rev2 regions of FIV-C36 on the PPR background. Both chimeras were infectious in vivo, although replication levels were lower than for the parental viruses. The chimera carrying the 3' half of FIV-C36 demonstrated an intermediate disease course with a delayed peak viral load but ultimately resulted in significant reductions in neutrophil and CD4(+) T cells, suggesting potential adaptation in vivo. Taken together, the findings suggest that the rapid-growth phenotype and pathogenicity of FIV-C36 are the result of evolutionary fine tuning throughout the viral genome, rather than being properties of any one constituent.
  •  
30.
  • Dhillon, Arun, et al. (author)
  • Structural insights into the interaction between adenovirus C5 hexon and human lactoferrin
  • 2024
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 98:3
  • Journal article (peer-reviewed)abstract
    • Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackieadenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon’s hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development.
  •  
31.
  • Douagi, I., et al. (author)
  • Role of interferon regulatory factor 3 in type I interferon responses in rotavirus-infected dendritic cells and fibroblasts
  • 2007
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 81:6, s. 2758-2768
  • Journal article (peer-reviewed)abstract
    • The main pathway for the induction of type I interferons (IFN) by viruses is through the recognition of viral RNA by cytosolic receptors and the subsequent activation of interferon regulatory factor 3 (IRF-3), which drives IFN-a/ß transcription. In addition to their role in inducing an antiviral state, type I IFN also play a role in modulating adaptive immune responses, in part via their effects on dendritic cells (DCs). Many viruses have evolved mechanisms to interfere with type I IFN induction, and one recently reported strategy for achieving this is by targeting IRF-3 for degradation, as shown for rotavirus nonstructural protein 1 (NSP1). It was therefore of interest to investigate whether rotavirus-exposed DCs would produce type I IFN and/or mature in response to the virus. Our results demonstrate that IRF-3 was rapidly degraded in rotavirus-infected mouse embryonic fibroblasts (MEFs) and type I IFN was not detected in these cultures. In contrast, rotavirus induced type I IFN production in myeloid DCs (mDCs), resulting in their activation. Type I IFN induction in response to rotavirus was reduced in mDCs from IRF-3-/- mice, indicating that IRF-3 was important for mediating the response. Exposure of mDCs to UV-treated rotavirus induced significantly higher type I IFN levels, suggesting that rotavirus-encoded functions also antagonized the response in DCs. However, in contrast to MEFs, this action was not sufficient to completely abrogate type I IFN induction, consistent with a role for DCs as sentinels for virus infection. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
  •  
32.
  • Duran-Castells, C., et al. (author)
  • Sirtuin-2, NAD-Dependent Deacetylase, Is a New Potential Therapeutic Target for HIV-1 Infection and HIV-Related Neurological Dysfunction
  • 2023
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 97:2
  • Journal article (peer-reviewed)abstract
    • Neurocognitive disorders are frequently reported in people living with HIV (PLWH) even with the introduction of combined antiretroviral treatment (cART). To identify biomarkers and potential therapeutic tools to target HIV infection in peripheral blood and in the central nervous system (CNS), plasma proteomics were applied in untreated chronic HIV-infected individuals with different levels of virus control. The implementation and access to combined antiretroviral treatment (cART) have dramatically improved the quality of life of people living with HIV (PLWH). However, some comorbidities, such as neurological disorders associated with HIV infection still represent a serious clinical challenge. Soluble factors in plasma that are associated with control of HIV replication and neurological dysfunction could serve as early biomarkers and as new therapeutic targets for this comorbidity. We used a customized antibody array for determination of blood plasma factors in 40 untreated PLWH with different levels of viremia and found sirtuin-2 (SIRT2), an NAD-dependent deacetylase, to be strongly associated with elevated viral loads and HIV provirus levels, as well as with markers of neurological damage (a-synuclein [SNCA], brain-derived neurotrophic factor [BDNF], microtubule-associated protein tau [MAPT], and neurofilament light protein [NFL]). Also, longitudinal analysis in HIV-infected individuals with immediate (n = 9) or delayed initiation (n = 10) of cART revealed that after 1 year on cART, SIRT2 plasma levels differed between both groups and correlated inversely with brain orbitofrontal cortex involution. Furthermore, targeting SIRT2 with specific small-molecule inhibitors in in vitro systems using J-LAT A2 and primary glial cells led to diminished HIV replication and virus reactivation from latency. Our data thus identify SIRT2 as a novel biomarker of uncontrolled HIV infection, with potential impact on neurological dysfunction and offers a new therapeutic target for HIV treatment and cure.IMPORTANCE Neurocognitive disorders are frequently reported in people living with HIV (PLWH) even with the introduction of combined antiretroviral treatment (cART). To identify biomarkers and potential therapeutic tools to target HIV infection in peripheral blood and in the central nervous system (CNS), plasma proteomics were applied in untreated chronic HIV-infected individuals with different levels of virus control. High plasma levels of sirtuin-2 (SIRT2), an NAD(+) deacetylase, were detected in uncontrolled HIV infection and were strongly associated with plasma viral load and proviral levels. In parallel, SIRT2 levels in the peripheral blood and CNS were associated with markers of neurological damage and brain involution and were more pronounced in individuals who initiated cART later in infection. In vitro infection experiments using specific SIRT2 inhibitors suggest that specific targeting of SIRT2 could offer new therapeutic treatment options for HIV infections and their associated neurological dysfunction.
  •  
33.
  • Edholm, Dan, et al. (author)
  • Adenovirus vector designed for expression of toxic proteins
  • 2001
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 75:20, s. 9579-9584
  • Journal article (peer-reviewed)abstract
    • To construct recombinant adenoviruses expressing biologically active proteins may be impossible, or result in a significant reduction in virus yield, if the protein expressed has an inhibitory effect on virus replication or cellular growth. To overcome this problem, we previously designed adenovirus vectors expressing foreign proteins from inducible promoters. However, during our work with a replication-deficient virus expressing the ASF/SF2 splicing factor from a progesterone antagonist-inducible gene cassette, we discovered that ASF/SF2 was expressed at a significant level in the 293 producer cell line, even in the absence of inducer. 293 cells code for adenovirus E1A and E1B proteins and thus support the growth of E1-deficient adenoviruses. Here we show that this background ASF/SF2 expression results from a low level of E1A-mediated transactivation of the basal promoter driving transgene expression. To overcome the problem of leaky expression, we reconstructed a novel gene cassette that combines an inducible promoter and a Lac repressor protein-based block to reduce transcriptional elongation. We show that this novel vector system dramatically reduced background transgene expression and therefore should be useful for the rescue and propagation of high-titer stocks of recombinant adenoviruses expressing toxic proteins.
  •  
34.
  • Evilevitch, Alex, et al. (author)
  • Mechanical Capsid Maturation Facilitates the Resolution of Conflicting Requirements for Herpesvirus Assembly
  • 2022
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 96:4, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
  •  
35.
  • Fedeli, Chiara, et al. (author)
  • Axl can serve as entry factor for lassa virus depending on the functional glycosylation of dystroglycan
  • 2018
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 92:5
  • Journal article (peer-reviewed)abstract
    • The highly pathogenic arenavirus Lassa virus (LASV) represents a serious public health problem in Africa. Although the principal LASV receptor, dystroglycan (DG), is ubiquitously expressed, virus binding critically depends on DG's posttranslational modification, which does not always correlate with tissue tropism. The broadly expressed phosphatidylserine receptor Axl was recently identified as an alternative LASV receptor candidate, but its role in LASV entry is unclear. Here, we investigate the exact role of Axl in LASV entry as a function of DG's posttranslational modification. We found that in the absence of functional DG, Axl can mediate LASV entry via apoptotic mimicry. Productive entry requires virus-induced receptor activation, involves macropinocytosis, and critically depends on LAMP-1. In endothelial cells that express low levels of glycosylated DG, both receptors can promote LASV entry. In sum, our study defines the roles of Axl in LASV entry and provides a rationale for targeting Axl in antiviral therapy.
  •  
36.
  • Flick, Kirsten, et al. (author)
  • Functional analysis of the noncoding regions of the Uukuniemi virus (Bunyaviridae) RNA segments
  • 2004
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 78:21, s. 11726-11738
  • Journal article (peer-reviewed)abstract
    • The role of the variable portion of the noncoding regions (NCRs) of the three Bunyaviridae RNA segments (L, M, S) in transcription, replication, and packaging was studied using the recently developed plasmid-driven RNA polymerase I minigenome system for Uukuniemi (UUK) virus, genus Phlebovirus (11), as a model. Comparison of the different segments showed that all NCRs were sufficient to mediate transcription/replication of a minigenome but demonstrated decreased promoter strength in the order M > L > S. Chimeric minigenomes with flanking NCRs from different genome segments revealed that the number of total base pairs within the inverted, partially complementary ends was important for transcription and replication. Point mutations increasing the base-pairing potential produced increased reporter expression, indicating that complementarity between the 5' and 3' ends is crucial for promoter activity. The role of the intergenic region (IGR) located between the two open reading frames of the ambisense UUK virus S segment was analyzed by inserting this sequence element downstream of the reporter genes. The presence of the IGR was found to enhance reporter expression, demonstrating that efficient transcription termination, regulated by the IGR, is important for optimal minigenome mRNA translation. Finally, genome packaging efficacy varied for different NCRs and was strongest for L followed by M and S. Strong reporter gene activity was still observed after seven consecutive cell culture passages, indicating a selective rather than random genome-packaging mechanism. In summary, our results demonstrate that the NCRs from all three segments contain the necessary signals to initiate transcription and replication as well as packaging. Based on promoter strength, M-segment NCRs may be the preferred choice for the development of reverse genetics and minigenome rescue systems for bunyaviruses.
  •  
37.
  • Flick, Ramon, et al. (author)
  • Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance
  • 2002
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 76:21, s. 10849-10860
  • Journal article (peer-reviewed)abstract
    • We have performed an extensive mutational analysis of the proposed promoter region of the phlebovirus Uukuniemi (UUK), a member of the Bunyaviridae family. This was achieved by using a recently developed RNA polymerase I (Pol I)-driven reverse genetics system (R. Flick and R. F. Pettersson, J. Virol. 75:1643-1655, 2001). Chimeric cDNAs containing the coding region for the reporter chloramphenicol acetyltransferase (CAT) in an antisense orientation were flanked by the 5'- and 3'-terminal nontranslated regions of the UUK virus-sense RNA (vRNA) derived from the medium-sized (M) RNA segment. The chimeric cDNAs (Pol I expression cassettes) were cloned between the murine Pol I promoter and terminator, and the plasmids were transfected into BHK-21 cells. CAT activity was determined after cotransfection with viral expression plasmids encoding the RNA-dependent RNA polymerase (L) and the nucleoprotein (N) or, alternatively, after superinfection with UUK virus helper virus. Using oligonucleotide-directed mutagenesis, single point mutations (substitutions, deletions, and insertions) were introduced into the viral promoter region. Differences in CAT activities were interpreted to reflect the efficiency of mRNA transcription from the mutated promoter and the influence on RNA replication. Analysis of 109 mutants allowed us to define two important regulatory regions within the proximal promoter region (site A, positions 3 to 5 and 2 to 4; site B, positions 8 and 8, where underlined nucleotides refer to positions in the vRNA 3' end). Complementary double nucleotide exchanges in the proximal promoter region, which maintained the possibility for base pairing between the 5' and 3' ends, demonstrated that nucleotides in the two described regions are essential for viral polymerase recognition in a base-specific manner. Thus, mere preservation of panhandle base pairing between the 5' and 3' ends is not sufficient for promoter activity. In conclusion, we have been able to demonstrate that both ends of the M RNA segment build up the promoter region and are involved in the specific recognition by the viral polymerase.
  •  
38.
  • Flick, Ramon, et al. (author)
  • Reverse genetics for crimean-congo hemorrhagic fever virus.
  • 2003
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 77:10, s. 5997-6006
  • Journal article (peer-reviewed)abstract
    • The widespread geographical distribution of Crimean-Congo hemorrhagic fever (CCHF) virus (more than 30 countries) and its ability to produce severe human disease with high mortality rates (up to 60%) make CCHF a major public health concern worldwide. We describe here the successful establishment of a reverse genetics technology for CCHF virus, a member of the genus Nairovirus, family BUNYAVIRIDAE: The RNA polymerase I (pol I) system was used to generate artificial viral RNA genome segments (minigenomes), which contained different reporter genes in antisense (virus RNA) or sense (virus-complementary RNA) orientation flanked by the noncoding regions of the CCHF virus S segment. Reporter gene expression was observed in different eukaryotic cell lines following transfection and subsequent superinfection with CCHF virus, confirming encapsidation, transcription, and replication of the pol I-derived minigenomes. The successful transfer of reporter gene activity to fresh cells demonstrated the generation of recombinant CCHF viruses, thereby confirming the packaging of the pol I-derived minigenomes into progeny viruses. The system offers a unique opportunity to study the biology of nairoviruses and to develop therapeutic and prophylactic measures against CCHF infections. In addition, we demonstrated for the first time that the human pol I system can be used to develop reverse genetics approaches for viruses in the family BUNYAVIRIDAE: This is important since it might facilitate the manipulation of bunyaviruses with cell and host tropisms restricted to primates.
  •  
39.
  • Fonteneau, Jean-François, et al. (author)
  • Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells
  • 2004
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 78:10, s. 5223-5232
  • Journal article (peer-reviewed)abstract
    • In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-α/β) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-α and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate naïve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.
  •  
40.
  • Forsell, Mattias N E, et al. (author)
  • Biochemical and immunogenic characterization of soluble human immunodeficiency virus type 1 envelope glycoprotein trimers expressed by semliki forest virus.
  • 2005
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 79:17, s. 10902-14
  • Journal article (peer-reviewed)abstract
    • The current lack of envelope glycoprotein immunogens that elicit broadly neutralizing antibody responses remains a major challenge for human immunodeficiency virus type 1 (HIV-1) vaccine development. However, the recent design and construction of stable soluble gp140 trimers have shown that some neutralization breadth can be achieved by using immunogens that better mimic the functional viral spike complex. The use of genetic delivery systems to drive the in vivo expression of such immunogens for the stimulation of neutralizing antibodies against HIV-1 may offer advantages by maintaining the quaternary structure of the trimeric envelope glycoproteins. Here, we describe the biochemical and immunogenic properties of soluble HIV-1 envelope glycoprotein trimers expressed by recombinant Semliki Forest virus (rSFV). The results presented here demonstrate that rSFV supports the expression of stable soluble gp140 trimers that retain recognition by conformationally sensitive antibodies. Further, we show that rSFV particle immunizations efficiently primed immune responses as measured after a single boost with purified trimeric gp140 protein, resulting in a Th1-biased antibody response. This differed from the Th2-biased antibody response obtained after repeated immunizations with purified gp140 protein trimers. Despite this difference, both regimens stimulated neutralizing antibody responses of similar potency. This suggests that rSFV may be a useful component of a viral vector prime-protein boost regimen aimed at stimulating both cell-mediated immune responses and neutralizing antibodies against HIV-1.
  •  
41.
  • Fouchier, Ron A M, et al. (author)
  • Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.
  • 2005
  • In: J Virol. - : ASM International. - 0022-538X .- 1098-5514. ; 79:5, s. 2814-22
  • Journal article (peer-reviewed)abstract
    • In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.
  •  
42.
  • Fusco, Salvatore, 1985 (author)
  • Unravelling the Role of the F55 Regulator in the Transition from Lysogeny to UV Induction of Sulfolobus Spindle-Shaped Virus 1
  • 2015
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 89:12, s. 6453-6461
  • Journal article (peer-reviewed)abstract
    • ABSTRACTSulfolobus spindle-shaped virus 1 represents a model for studying virus-host interaction in harsh environments, and it is so farthe only member of the family Fuselloviridae that shows a UV-inducible life cycle. Although the virus has been extensively studied,mechanisms underpinning the maintenance of lysogeny as well as those regulating the UV induction have received little attention.Recently, a novel SSV1 transcription factor, F55, was identified. This factor was able to bind in vitro to several sequencesderived from the early and UV-inducible promoters of the SSV1 genome. The location of these binding sites together with thedifferential affinity of F55 for these sequences led to the hypothesis that this protein might be involved in the maintenance of theSSV1 lysogeny. Here, we report an in vivo survey of the molecular events occurring at the UV-inducible region of the SSV1 genome,with a focus on the binding profile of F55 before and after the UV irradiation. The binding of F55 to the target promoterscorrelates with transcription repression, whereas its dissociation is paralleled by transcription activation. Therefore, we proposethat F55 acts as a molecular switch for the transcriptional regulation of the early viral genes.IMPORTANCEFunctional genomic studies of SSV1 proteins have been hindered by the lack of similarity with other characterized proteins. As aresult, few insights into their in vivo roles have been gained throughout the last 3 decades. Here, we report the first in vivo investigationof an SSV1 transcription regulator, F55, that plays a key role in the transition from the lysogenic to the induced state ofSSV1. We show that F55 regulates the expression of the UV-inducible as well as the early genes. Moreover, the differential affinityof this transcription factor for these targets allows a fine-tuned and temporal coordinated regulation of transcription of viralgenes.
  •  
43.
  • Gredmark, S, et al. (author)
  • Human cytomegalovirus inhibits differentiation of monocytes into dendritic cells with the consequence of depressed immunological functions
  • 2003
  • In: Journal of virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 77:20, s. 10943-10956
  • Journal article (peer-reviewed)abstract
    • Human cytomegalovirus (HCMV) infections in immunocompromised patients are associated with impaired immunological functions. Blood monocytes, which can differentiate into dendritic cells upon cytokine stimulation, play a central role in adequate immune reactivity and are believed to carry latent HCMV. We demonstrate here that HCMV infection of monocytes results in a block in the cytokine-induced differentiation of monocytes into functionally active CD1a-positive dendritic cells, which exhibited severely depressed immunological functions in vitro. The HCMV-infected cells exhibited a significantly reduced ability to endocytose fluorescein isothiocyanate-labeled dextran particles as well as a more than 90% reduced ability to migrate in response to the chemoattractant factors RANTES, MIP-1α, and MIP-3β. Interestingly, HCMV-infected cells expressed high levels of the costimulatory molecule CD86, in contrast to the low levels of expression that was observed on uninfected monocytes and uninfected immature dendritic cells. Furthermore, HCMV-infected CD1a-negative cells were unable to induce a T-cell response. Thus, these observations suggest that HCMV infection of monocytes in vitro blocks cytokine-induced dendritic cell differentiation, and since dendritic cells play a central role in initiating immune responses, these findings suggest a powerful tactic to avoid immune recognition and to blunt the immune response at early phases of infection.
  •  
44.
  • Gullberg, Maria, et al. (author)
  • A single coxsackievirus B2 capsid residue controls cytolysis and apoptosis in rhabdomyosarcoma cells.
  • 2010
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 84:12, s. 5868-5879
  • Journal article (peer-reviewed)abstract
    • Coxsackievirus B2 (CVB2), one of six human pathogens of the group B coxsackieviruses within the enterovirus genus of Picornaviridae, causes a wide spectrum of human diseases ranging from mild upper respiratory illnesses to myocarditis and meningitis. The CVB2 prototype strain Ohio-1 (CVB2O) was originally isolated from a patient with summer grippe in the 1950s. Later on, CVB2O was adapted to cytolytic replication in rhabdomyosarcoma (RD) cells. Here, we present analyses of the correlation between the adaptive mutations of this RD variant and the cytolytic infection in RD cells. Using reverse genetics, we identified a single amino acid change within the exposed region of the VP1 protein (glutamine to lysine at position 164) as the determinant for the acquired cytolytic trait. Moreover, this cytolytic virus induced apoptosis, including caspase activation and DNA degradation, in RD cells. These findings contribute to our understanding of the host cell adaptation process of CVB2O and provide a valuable tool for further studies of virus-host interactions.
  •  
45.
  • Gullberg, Maria, et al. (author)
  • Characterization of a putative ancestor of coxsackievirus B5.
  • 2010
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 84, s. 9695-9708
  • Journal article (peer-reviewed)abstract
    • Like other RNA viruses, coxsackievirus B5 (CVB5) exists as circulating heterogeneous populations of genetic variants. In this study, we present the reconstruction and characterization of a probable ancestral virion of CVB5. Phylogenetic analyses based on capsid protein encoding regions (the VP1 gene of 41 clinical isolates and the entire P1 region of eight clinical isolates) of CVB5 revealed two major co-circulating lineages. Ancestral capsid sequences were inferred from sequences of these contemporary CVB5 isolates using maximum likelihood methods. By using Bayesian phylodynamic analysis, the inferred VP1 ancestral sequence was dated back to 1854 (1807-1898). In order to study the properties of the putative ancestral capsid, the entire ancestral P1 sequence was synthesized de novo and inserted into the replicative backbone of an infectious CVB5 cDNA clone. Characterization of the recombinant virus in cell culture showed that fully functional infectious virus particles were assembled and that these viruses displayed properties similar to those of modern isolates, in terms of receptor preferences, plaque phenotype, growth characteristics and cell tropism. This is the first report describing resurrection and characterization of a picornavirus with a putative ancestral capsid. Our approach, including phylogenetics-based reconstruction of viral predecessors, could serve as a starting point for experimental studies of viral evolution and might also provide an alternative strategy in the development of vaccines.
  •  
46.
  • Gustafsson, Dan J, et al. (author)
  • The Arg279Gln [corrected] substitution in the adenovirus type 11p (Ad11p) fiber knob abolishes EDTA-resistant binding to A549 and CHO-CD46 cells, converting the phenotype to that of Ad7p.
  • 2006
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 80:4, s. 1897-905
  • Journal article (peer-reviewed)abstract
    • The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Gln [corrected] substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46.
  •  
47.
  • Görander, Staffan, 1952, et al. (author)
  • Glycoprotein G of Herpes Simplex Virus 2 as a Novel Vaccine Antigen for Immunity to Genital and Neurological Disease
  • 2012
  • In: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 86:14, s. 7544-7553
  • Journal article (peer-reviewed)abstract
    • The envelope glycoproteins of herpes simplex virus 1 (HSV-1) and HSV-2, with the exception of glycoprotein G, elicit cross-reactive B- and T-cell responses. Human vaccine trials, using the cross-reactive glycoproteins B and D, have shown no protection against genital HSV-2 infection or disease. In this study, the mature form of glycoprotein G (mgG-2) of HSV-2 was used for immunization of mice, either alone or in combination with adjuvant CpG, followed by an intravaginal challenge with a lethal dose of a fully virulent HSV-2 strain. Mice immunized with mgG-2 plus CpG showed low disease scores and a significantly higher survival rate (73%) than mice immunized with mgG-2 alone (20%) or controls (0%). Accordingly, limited numbers of infectious HSV-2 particles were detected in the spinal cord of mice immunized with mgG-2 plus CpG. The observed protection was associated with a gamma interferon (IFN-gamma) response by splenic CD4(+) T cells upon antigen restimulation in vitro and in vaginal washes 1 day postinfection. The majority of sera collected from mice immunized with mgG-2 plus CpG showed macrophage-mediated antibody-dependent cellular cytotoxicity and antibody-dependent complement-mediated cytolysis, while no neutralization activity was observed. In conclusion, we have shown that immunization with the type-specific mgG-2 protein in combination with CpG could elicit protective immunity against an otherwise lethal vaginal HSV-2 challenge. The mgG-2 protein may therefore constitute a promising HSV-2 vaccine antigen to be considered for future human trials.
  •  
48.
  • Habjan, Matthias, et al. (author)
  • NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase
  • 2009
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 83:9, s. 4365-4375
  • Journal article (peer-reviewed)abstract
    • Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.
  •  
49.
  • Hafrén, Anders (author)
  • Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta
  • 2011
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 85, s. 9210-9221
  • Journal article (peer-reviewed)abstract
    • Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso) 4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.
  •  
50.
  • Hagbom, Marie, et al. (author)
  • The 5-HT3 Receptor Affects Rotavirus-Induced Motility
  • 2021
  • In: Journal of Virology. - : AMER SOC MICROBIOLOGY. - 0022-538X .- 1098-5514. ; 95:15
  • Journal article (peer-reviewed)abstract
    • Rotavirus infection is highly prevalent in children, and the most severe effects are diarrhea and vomiting. It is well accepted that the enteric nervous system (ENS) is acti-vated and plays an important role, but knowledge of how rotavirus activates nerves within ENS and to the vomiting center is lacking. Serotonin is released during rotavirus infection, and antagonists to the serotonin receptor subtype 3 (5-HT3 receptor) can attenuate rotavi-rus-induced diarrhea. In this study, we used a 5-HT3 receptor knockout (KO) mouse model to investigate the role of this receptor in rotavirus-induced diarrhea, motility, electrolyte secretion, inflammatory response, and vomiting reflex. The number of diarrhea days (P= 0.03) and the number of mice with diarrhea were lower in infected 5-HT3 receptor KO than wild-type pups. In vivo investigation of fluorescein isothiocyanate (FITC)-dextran transit time showed that intestinal motility was lower in the infected 5-HT3 receptor KO compared to wild-type mice (P= 0.0023). Ex vivo Ussing chamber measurements of poten-tial difference across the intestinal epithelia showed no significant difference in electrolyte secretion between the two groups. Immediate early gene cFos expression level showed no difference in activation of the vomiting center in the brain. Cytokine analysis of the intestine indicated a low effect of inflammatory response in rotavirus-infected mice lack -ing the 5-HT3 receptor. Our findings indicate that the 5-HT3 receptor is involved in rotavi-rus-induced diarrhea via its effect on intestinal motility and that the vagus nerve signaling to the vomiting center occurs also in the absence of the 5-HT3 receptor. IMPORTANCE The mechanisms underlying rotavirus-induced diarrhea and vomiting are not yet fully understood. To better understand rotavirus pathophysiology, characterization of nerve signaling within the ENS and through vagal efferent nerves to the brain, which have been shown to be of great importance to the disease, is necessary. Serotonin (5-HT), a mediator of both diarrhea and vomiting, has been shown to be released from entero-chromaffin cells in response to rotavirus infection and the rotavirus enterotoxin NSP4. Here, we investigated the role of the serotonin receptor 5-HT3, which is known to be involved in the nerve signals that regulate gut motility, intestinal secretion, and signal transduction through the vagus nerve to the brain. We show that the 5-HT3 receptor is involved in rotavirus-induced diarrhea by promoting intestinal motility. The findings shed light on new treatment possibilities for rotavirus diarrhea.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 477
Type of publication
journal article (475)
other publication (1)
research review (1)
Type of content
peer-reviewed (460)
other academic/artistic (17)
Author/Editor
Garoff, H (20)
Liljestrom, P (19)
Arnberg, Niklas (16)
Soderberg-Naucler, C (15)
Mirazimi, A (14)
Albert, J. (13)
show more...
Sallberg, M (11)
Hedestam, GBK (11)
Wadell, Göran (11)
Akusjärvi, Göran (10)
McInerney, GM (10)
Lundkvist, A (9)
Bergström, Tomas, 19 ... (8)
Merits, A (8)
Överby, Anna K. (8)
Mascola, JR (8)
Wallin, M (8)
aut (7)
Xing, L (7)
Cheng, RH (7)
Klingstrom, J (7)
Svensson, Lennart (7)
Wyatt, RT (7)
Frängsmyr, Lars (7)
Schwartz, S (7)
Sjoberg, M (7)
Svensson, L (6)
Blomberg, Jonas (6)
Douagi, I (6)
Lore, K (6)
Ekstrom, M. (6)
Lindberg, A Michael (6)
Tan, W. (6)
Broliden, K (6)
Vaheri, A (5)
Hecht, FM (5)
Fenyö, Eva Maria (5)
Klein, G (5)
Liljeqvist, Jan-Åke, ... (5)
Orvell, C (5)
Karlsson, A. (5)
Thorstensson, R (5)
Esteban, M (5)
Leitner, T (5)
FENYO, EM (5)
Pettersson, RF (5)
Plyusnin, A (5)
Feng, Y. (5)
Norberg, Peter, 1974 (5)
Klenerman, P (5)
show less...
University
Karolinska Institutet (273)
Uppsala University (64)
Umeå University (50)
Lund University (40)
University of Gothenburg (35)
Linköping University (24)
show more...
Swedish University of Agricultural Sciences (14)
Linnaeus University (12)
Stockholm University (10)
Royal Institute of Technology (2)
Chalmers University of Technology (2)
Halmstad University (1)
Örebro University (1)
Mid Sweden University (1)
show less...
Language
English (476)
Undefined language (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (129)
Natural sciences (43)
Agricultural Sciences (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view