SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0953 816X "

Search: L773:0953 816X

  • Result 1-50 of 509
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arvidsson, Andreas, et al. (author)
  • N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 14:1, s. 10-18
  • Journal article (peer-reviewed)abstract
    • Neurogenesis in the adult rat dentate gyrus was studied following focal ischemic insults produced by middle cerebral artery occlusion (MCAO). Animals were subjected to either 30 min of MCAO, which causes damage confined to the striatum, or 2 h of MCAO, which leads to both striatal and cortical infarction. When compared to sham-operated rats, MCAO-rats showed a marked increase of the number of cells double-labelled for 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU; injected during 4-6 days postischemia) and neuronal-specific antigen (NeuN; a marker of postmitotic neurons) in the ipsilateral dentate granule cell layer and subgranular zone at 5 weeks following the 2 h insult. Only a modest and variable increase of BrdU-labelled cells was found after 30 min of MCAO. The enhanced neurogenesis was not dependent on cell death in the hippocampus, and its magnitude was not correlated to the degree of cortical damage. Systemic administration of the N-methyl-D-aspartate (NMDA) receptor blocker dizocilpine maleate (MK-801) completely suppressed the elevated neurogenesis following 2 h of MCAO. Our findings indicate that stroke leads to increased neurogenesis in the adult rat dentate gyrus through glutamatergic mechanisms acting on NMDA receptors. This modulatory effect may be mediated through changes in the levels of several growth factors, which occur after stroke, and could influence various regulatory steps of neurogenesis.
  •  
2.
  • Ekdahl, Christine T, et al. (author)
  • Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 14:6, s. 937-945
  • Journal article (peer-reviewed)abstract
    • The dentate gyrus (DG) is one of the few regions in the brain that continues to produce new neurons throughout adulthood. Seizures not only increase neurogenesis, but also lead to death of DG neurons. We investigated the relationship between cell death and neurogenesis following seizures in the DG of adult rats by blocking caspases, which are key components of apoptotic cell death. Multiple intracerebroventricular infusions of caspase inhibitors (pancaspase inhibitor zVADfmk, and caspase 3 and 9 inhibitor) prior to, just after, 1 day after, and 1 week following 2 h of lithium-pilocarpine-induced status epilepticus reduced the number of terminal deoxynucleotidyl transferase-mediated fluorescein-dUTP nick-end labelled (TUNEL) cells and increased the number of bromodeoxyuridine (BrdU) -stained proliferated cells in the subgranular zone at 1 week. The caspase inhibitor-treated group did not differ from control at 2 days or 5 weeks following the epileptic insult. Our findings suggest that caspases modulate seizure-induced neurogenesis in the DG, probably by regulating apoptosis of newly born neurons, and that this action can be suppressed transiently by caspase inhibitors. Furthermore, although previous studies have indicated that increased neuronal death can trigger neurogenesis, we show here that reduction in apoptotic death may be associated with increased neurogenesis.
  •  
3.
  • Hansson, Oskar, et al. (author)
  • Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 14:9, s. 1492-1504
  • Journal article (peer-reviewed)abstract
    • Transgenic Huntington's disease (HD) mice, expressing exon 1 of the human HD gene (lines R6/1 and R6/2), are totally resistant to striatal lesions caused by the NMDA receptor agonist quinolinic acid (QA). Here we show that this resistance develops gradually over time in both R6/1 and R6/2 mice, and that it occurred earlier in R6/2 (CAG-155) than in R6/1 (CAG-115) mice. The development of the resistance coincided with the appearance of nuclear inclusions and with the onset of motor deficits. In the HD mice, hippocampal neurons were also resistant to QA, especially in the CA1 region. Importantly, there was no change in susceptibility to QA in transgenic mice with a normal CAG repeat (CAG-18). R6/1 mice were also resistant to NMDA-, but not to AMPA-induced striatal damage. Interestingly, QA-induced current and calcium influx in striatal R6/2 neurons were not decreased. However, R6/2 neurons had a better capacity to handle cytoplasmic calcium ([Ca2+]c) overload following QA and could avoid [Ca2+]c deregulation and cell lysis. In addition, basal [Ca2+]c levels were increased five-fold in striatal R6/2 neurons. This might cause an adaptation of R6 neurons to excitotoxic stress resulting in an up-regulation of defense mechanisms, including an increased capacity to handle [Ca2+]c overload. However, the increased level of basal [Ca2+]c in the HD mice might also disturb intracellular signalling in striatal neurons and thereby cause neuronal dysfunction and behavioural deficits.
  •  
4.
  • Jongsma Wallin, Helen, et al. (author)
  • Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 14:2, s. 267-282
  • Journal article (peer-reviewed)abstract
    • Expression of pituitary adenylate cyclase-activating polypeptide in sensory neurons varies with injury or inflammation. The neurotrophins NGF and NT-3 are profound regulators of neuronal peptidergic phenotype in intact and injured sensory neurons. This study examined their potential for modulation of PACAP expression in adult rat with intact and injured L4-L6 spinal nerves with or without immediate or delayed intrathecal infusion of NT-3 or NGF. Results indicate that in L5 DRG, few trkC neurons express high levels of PACAP mRNA in the intact state, but many do following injury. The elevated expression in injured neurons is mitigated by NT-3 infusion, suggesting a role for NT-3 in returning the 'injured phenotype' back towards an 'Intact phenotype'. NGF dramatically up-regulated PACAP expression in trkA-positive neurons in both intact and injured DRGs, implicating NGF as a positive regulator of PACAP expression in nociceptive neurons. Surprisingly, NT-3 modulates PACAP expression in an antagonistic fashion to NGF in intact neurons, an effect most evident in the trkA neurons not expressing trkC. Both NT-3 and NGF infusion results in decreased detection of PACAP protein in the region of the gracile nuclei, where central axons of the peripherally axotomized large sensory fibers terminate. NGF infusion also greatly increased the amount of PACAP protein detected in the portion of the dorsal horn innervated by small-medium size DRG neurons, while both neurotrophins appear able to prevent the decrease in PACAP expression observed in these afferents with injury. These results provide the first insights into the potential molecules implicated in the complex regulation of PACAP expression in sensory neurons.
  •  
5.
  • Kirik, Deniz, et al. (author)
  • Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 13:8, s. 1589-1599
  • Journal article (peer-reviewed)abstract
    • Here we studied the effects of glial cell line-derived neurotrophic factor (GDNF) in a rat model that represents the symptomatic stages of Parkinson's disease. GDNF was infused starting 2 weeks after an intrastriatal 6-hydroxydopamine (6-OHDA) lesion in order to halt the ongoing degeneration of the nigrostriatal dopaminergic neurons. GDNF or vehicle was infused in the striatum or the lateral ventricle via an osmotic minipump over a total 4-week period (2-6 weeks postlesion). Motor function was evaluated by the stepping, paw reaching and drug-induced motor asymmetry tests before the pump infusion was initiated, and was repeated once during (5 weeks postlesion) and twice after the withdrawal of the minipumps (7 and 11 weeks postlesion). We found that within two weeks following the lesion approximately 40% of the nigral TH-positive neurons were lost. In the vehicle infusion groups there was an additional 20% cell loss between 2 and 12 weeks after the lesion. This latter cell loss occurred mainly in the caudal part of the SN whereas the cell loss in the rostral SN was almost complete within the first two weeks. Ventricular GDNF infusion completely blocked the late degenerating neurons in the caudal SN and had long lasting behavioural effects on the stepping test and amphetamine rotation, extending to 6 weeks after withdrawal of the factor. Striatal infusion affected the motor behaviour transiently during the infusion period but the motor performance of these animals returned to baseline upon cessation of the GDNF delivery, and the delayed nigral cell loss was marginally affected. We conclude that intraventricular GDNF can successfully block the already initiated degenerative process in the substantia nigra, and that the effects achieved via the striatal route, when GDNF is given acutely after the lesion, diminish as the fibre terminal degeneration proceeds.
  •  
6.
  • Lundblad, Martin, et al. (author)
  • Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson's disease.
  • 2002
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 15:1, s. 120-132
  • Journal article (peer-reviewed)abstract
    • In an attempt to define clinically relevant models of akinesia and dyskinesia in 6-hydroxydopamine (6-OHDA)-lesioned rats, we have examined the effects of drugs with high (L-DOPA) vs. low (bromocriptine) dyskinesiogenic potential in Parkinson's disease on three types of motor performance, namely: (i) abnormal involuntary movements (AIMs) (ii) rotational behaviour, and (iii) spontaneous forelimb use (cylinder test). Rats with unilateral 6-OHDA lesions received single daily i.p. injections of L-DOPA or bromocriptine at therapeutic doses. During 3 weeks of treatment, L-DOPA but not bromocriptine induced increasingly severe AIMs affecting the limb, trunk and orofacial region. Rotational behaviour was induced to a much higher extent by bromocriptine than L-DOPA. In the cylinder test, the two drugs initially improved the performance of the parkinsonian limb to a similar extent. However, L-DOPA-treated animals showed declining levels of performance in this test because the drug-induced AIMs interfered with physiological limb use, and gradually replaced all normal motor activities. L-DOPA-induced axial, limb and orolingual AIM scores were significantly reduced by the acute administration of compounds that have antidyskinetic efficacy in parkinsonian patients and/or nonhuman primates (-91%, yohimbine 10 mg/kg; -19%, naloxone 4-8 mg/kg; -37%, 5-methoxy 5-N,N-dimethyl-tryptamine 2 mg/kg; -30%, clozapine 8 mg/kg; -50%, amantadine 40 mg/kg). L-DOPA-induced rotation was, however, not affected. The present results demonstrate that 6-OHDA-lesioned rats do exhibit motor deficits that share essential functional similarities with parkinsonian akinesia or dyskinesia. Such deficits can be quantified using novel and relatively simple testing procedures, whereas rotometry cannot discriminate between dyskinetic and antiakinetic effects of antiparkinsonian treatments.
  •  
7.
  • Petersén, Åsa, et al. (author)
  • Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 14:9, s. 1425-1435
  • Journal article (peer-reviewed)abstract
    • Huntington's disease is an autosomal dominant hereditary neurodegenerative disorder characterized by severe striatal cell loss. Dopamine (DA) has been suggested to play a role in the pathogenesis of the disease. We have previously reported that transgenic mice expressing exon 1 of the human Huntington gene (R6 lines) are resistant to quinolinic acid-induced striatal toxicity. In this study we show that with increasing age, R6/1 and R6/2 mice develop partial resistance to DA- and 6-hydroxydopamine-mediated toxicity in the striatum. Using electron microscopy, we found that the resistance is localized to the cell bodies and not to the neuropil. The reduction of dopamine and cAMP regulated phosphoprotein of a molecular weight of 32 kDa (DARPP-32) in R6/2 mice does not provide the resistance, as DA-induced striatal lesions are not reduced in size in DARPP-32 knockout mice. Neither DA receptor antagonists nor a N-methyl-d-aspartate (NMDA) receptor blocker reduce the size of DA-induced striatal lesions, suggesting that DA toxicity is not dependent upon DA- or NMDA receptor-mediated pathways. Moreover, superoxide dismutase-1 overexpression, monoamine oxidase inhibition and the treatment with the free radical scavenging spin-trap agent phenyl-butyl-tert-nitrone (PBN) also did not block DA toxicity. Levels of the antioxidant molecules, glutathione and ascorbate were not increased in R6/1 mice. Because damage to striatal neurons following intrastriatal injection of 6-hydroxydopamine was also reduced in R6 mice, a yet-to-be identified antioxidant mechanism may provide neuroprotection in these animals. We conclude that striatal neurons of R6 mice develop resistance to DA-induced toxicity with age.
  •  
8.
  • Symons, Natalie A., et al. (author)
  • Migration of cells into and out of peripheral nerve isografts in the peripheral and central nervous systems of the adult mouse
  • 2001
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 14:3, s. 522-532
  • Journal article (peer-reviewed)abstract
    • Peripheral nerve (PN) isografts provide a favourable environment for axon regeneration after peripheral and central nervous system (CNS) injury, but definitive information on the extent of cellular intermixing between donor and host tissues is lacking. We wished to compare migration patterns in fresh and predegenerate PN grafts, and also compare the extent of cell migration after transplantation to peripheral nervous system (PNS) versus CNS. To discern how host and donor cells interact after PIN transplantation, sciatic nerve segments were transplanted from inbred adult mice into PN defects (PN-PN grafts) or into lesioned cerebral cortex of opposite gender siblings. Migrating male cells were identified using a Y-chromosome-specific probe and in situ hybridization methods, and characterized immunohistochemically. The extent of donor and host cellular intermixing was similar in fresh and predegenerate PN-PN isografts. There was substantial intermixing of donor and host cells by 8 days. Many host cells migrating into epineurial regions of grafts were immunopositive for F4/80 (macrophages). The endoneurium of grafted PN was also colonized by host cells; some were F4/80(+) but many were immunostained with S-100 (Schwann cell marker). Donor S-100(+) Schwann cells rapidly migrated out into proximal and distal host PN and by 12 weeks were found at least 2 mm from the grafts. Endoneurial microvessels in grafts were mostly donor-derived. By comparison, in male PN grafts to female CNS, even after 6 weeks few donor cells had migrated out into surrounding host cortex, despite the observation that almost all grafts contained regenerating axons and were thus attached to host CNS tissue.
  •  
9.
  • Westin, J. E., et al. (author)
  • Persistent changes in striatal gene expression induced by long-term L-DOPA treatment in a rat model of Parkinson's disease
  • 2001
  • In: European Journal of Neuroscience. - 0953-816X .- 1460-9568. ; 14:7, s. 1171-1176
  • Journal article (peer-reviewed)abstract
    • Current knowledge of the molecular changes induced by dopamine denervation and subsequent treatment with L-DOPA is based on studies performed on relatively acute and young animal models of parkinsonism. It is highly warranted to ask how well these models simulate the state of chronic denervation and sustained L-DOPA pharmacotherapy which are typical of advanced Parkinson's disease. This study investigates the effects of time postdenervation and L-dopa treatment duration on the striatal expression of opioid precursor mRNAs and FosB/DFosB-related proteins. Unilaterally 6-hydroxydopamine-lesioned rats were treated with therapeutical doses of L-DOPA for one year (long-term group) or a few weeks (short-term group). Age-matched lesioned rats received injections of vehicle or bromocriptine, an antiparkinsonian compound which does not produce dyskinesia when administered de novo. The lesion-induced up-regulation of preproenkephalin mRNA expression persisted at more than one year postlesion, and was unaffected by the pharmacological treatments applied. L-DOPA, but not bromocriptine, induced high striatal levels of FosB/DFosB immunoreactivity and prodynorphin mRNA, and these did not differ between short-term and long-term L-DOPA-treated rats. The present data provide the first demonstration that L-DOPA maintains high striatal levels of fosB and prodynorphin gene expression during a prolonged course of treatment, which simulates the clinical practice in Parkinson's disease more closely than the short-treatment paradigms studied thus far.
  •  
10.
  •  
11.
  • Belluardo, N, et al. (author)
  • Neuronal expression and regulation of rat inhibitor of apoptosis protein-2 by kainic acid in the rat brain
  • 2002
  • In: European Journal of Neuroscience. - Uppsala Univ, Dept Neurosci, BMC, S-75123 Uppsala, Sweden. Univ Palermo, Fac Med, Dept Human Physiol, I-94125 Palermo, Italy. : WILEY. - 0953-816X .- 1460-9568. ; 15:1, s. 87-100
  • Journal article (peer-reviewed)abstract
    • Inhibitors of apoptosis proteins (IAPs) define a protein family with the ability to counteract cell death by the inhibition of different caspases activated during apoptosis. These proteins are present in different cells, however, the function and roles of IAPs in brain tissue are not fully understood. We report here that RIAP-2, the rat homologue of human cIAP-1/HIAP-2, is expressed in different areas of rat brain as shown by in situ hybridization and immunohistochemistry. Brain regions with relatively high expression of RIAP-2 mRNA included cortex, cerebellum and different subregions of rat hippocampus. Double labelling using a specific anti-RIAP antibody and markers for neurons and glial cells, showed that RIAP-2 is predominantly expressed by nerve cells. Kainic acid treatment, which induces seizures, transiently up-regulated RIAP-2 mRNA levels in cerebral cortex, in the CA1 and dentate gyrus regions of hippocampus, which returned to normal levels at 24 h. However in the CA3 region, RIAP-2 mRNA was decreased at 6 h following an early up-regulation. This region contains neurons particularly vulnerable to kainic acid induced cell degeneration. The decrease in RIAP-2 following kainic acid was also observed using immunohistochemistry. RIAP-2 protein did not colocalize with TUNEL labelling present in cells undergoing cell death. The results show that in the adult rat brain RIAP-2 is expressed mainly by neurons, and that the levels are regulated by kainic acid, which activates glutamate receptors. The decrease in RIAP-2 in specific neuronal populations may contribute to cell degeneration in vulnerable brain regions observed after kainic acid treatment.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Dahlqvist, Per, et al. (author)
  • Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats
  • 2004
  • In: European Journal of Neuroscience. - 0953-816X .- 1460-9568. ; 19:8, s. 2288-2298
  • Journal article (peer-reviewed)abstract
    • Cognitive impairment is common after ischemic stroke. In rodent stroke models using occlusion of the middle cerebral artery (MCA) this is reflected by impaired spatial memory associated with the size of the ischemic lesion. Housing in an enriched environment enhances brain plasticity and improves recovery of sensorimotor functions after experimental stroke in rats. In this study we report that postischemic housing in an enriched environment also attenuates the long-term spatial memory impairment after MCA occlusion and extinguishes the association between spatial memory and infarct volume. An enriched environment did not significantly alter the expression of selected neuronal plasticity-associated genes 1 month after MCA occlusion, indicating that most of the adaptive changes induced by an enriched environment have already occurred at this time point. We conclude that the attenuated memory impairment induced by environmental enrichment after MCA occlusion provides a useful model for further studies on the neurobiological mechanisms of recovery of cognitive functions after ischemic stroke.
  •  
16.
  •  
17.
  • Gussing, Fredrik, et al. (author)
  • NQO1 activity in the main and the accessory olfactory systems correlates with the zonal topography of projection maps
  • 2004
  • In: European Journal of Neuroscience. - : Wiley-Blackwell. - 0953-816X .- 1460-9568. ; 19:9, s. 2511-2518
  • Journal article (peer-reviewed)abstract
    • The mouse olfactory epithelium (OE) is divided into spatial zones, each containing neurons expressing zone-specific subsets of odorant receptor genes. Likewise, the vomeronasal (VN) organ is organized into apical and basal subpopulations of neurons expressing different VN receptor gene families. Axons projecting from the different OE zones and VN subpopulations form synapses within circumscribed regions in the glomerular layer of the olfactory bulb (OB) and accessory olfactory bulb (AOB), respectively. We here show that mature neurons in one defined zone selectively express NADPH:quinone oxidoreductase (NQO1), an enzyme that catalyses reduction of quinones. Immunohistochemistry and in situ hybridization analyses show non-overlapping expression of NQO1 and the Rb8 neural cell adhesion molecule (RNCAM/OCAM) in OE and axon terminals within glomeruli of the OB. In addition, NQO1 immunoreactivity reveals selective, zone-specific axon fasciculation in the olfactory nerve. VN subpopulations do not show complementary patterns of RNCAM and NQO1 immunoreactivity, instead both genes are co-expressed in apical VN neurons that project to the rostral AOB. These results indicate that one division of both the accessory and the main olfactory projection maps are composed of sensory neurons that are specialized to reduce environmental and/or endogenously produced quinones via an NQO1-dependent mechanism. The role of NQO1 in bioactivation of quinoidal drugs also points to a connection between zone-specific NQO1 expression and zone-specific toxicity of certain olfactory toxins.
  •  
18.
  •  
19.
  •  
20.
  • Kindlundh, Anna MS, et al. (author)
  • The anabolic-androgenic steroid nandrolone decanoate affects the density of dopamine receptors in the male rat brain
  • 2001
  • In: European Journal of Neuroscience. - 0953-816X .- 1460-9568. ; 13:2, s. 291-296
  • Journal article (peer-reviewed)abstract
    • In recent years a male group of anabolic-androgenic steroid misusers has been identified to share socio-demographic and personality related background factors with misusers of psychotropic substances, as well as being involved in habits of multiple drug use. The present study aimed to assess whether anabolic-androgenic steroids (AAS) would affect the density of the dopamine receptors in areas implicated in reward and behaviour in the male rat brain. The effects of 2 weeks of treatment with i.m. injections of nandrolone decanoate (15 mg/kg/day) on the expression of the D(1)-like and D(2)-like receptors were evaluated by autoradiography. Specific binding of D(1)-like receptors was significantly down regulated in the caudate putamen, the nucleus accumbens core and shell. D(2)-like receptor densities were down regulated in the nucleus accumbens shell, but up regulated in the caudate putamen, the nucleus accumbens core and the ventral tegmental area. These results are compatible with nandrolone induced neuroadaptive alterations in dopamine circuits associated with motor functions and behavioural paradigms known to be affected following AAS misuse.
  •  
21.
  • Konsman, J.P., et al. (author)
  • The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals, a functional anatomical analysis
  • 2000
  • In: European Journal of Neuroscience. - 0953-816X .- 1460-9568. ; 12:12, s. 4434-4446
  • Journal article (peer-reviewed)abstract
    • Cytokines act on the brain to induce fever and behavioural depression after infection. Although several mechanisms of cytokine-to-brain communication have been proposed, their physiological significance is unclear. We propose that behavioural depression is mediated by the vagus nerve activating limbic structures, while fever would primarily be due to humoral mechanisms affecting the preoptic area, including interleukin-6 (IL-6) action on the organum vasculosum of the laminae terminalis (OVLT) and induction of prostaglandins. This study assessed the effects of subdiaphragmatic vagotomy in rats on fever, behavioural depression, as measured by the social interaction test, and Fos expression in the brain. These responses were compared with induction of the prostaglandin-producing enzyme cyclooxygenase-2 and the transcription factor Stat3 that translocates after binding of IL-6. Vagotomy blocked behavioural depression after intraperitoneal injection of recombinant rat IL-1ß (25 µg/kg) or lipopolysaccharide (250 µg/kg, LPS) and prevented Fos expression in limbic structures and ventromedial preoptic area, but not in the OVLT. Fever was not affected by vagotomy, but associated with translocation of Stat3 in the OVLT and cyclooxygenase-2 induction around blood vessels. These results indicate that the recently proposed vagal link between the immune system and the brain activates limbic structures to induce behavioural depression after abdominal inflammation. Although the vagus might play a role in fever in response to low doses of LPS by activating the ventromedial preoptic area, it is likely to be overridden during more severe infection by action of circulating IL-6 on the OVLT or prostaglandins induced along blood vessels of the preoptic area.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Pissiota, Anna, et al. (author)
  • The human startle reflex and pons activation : a regional cerebral blood flow study
  • 2002
  • In: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 15:2, s. 395-398
  • Journal article (peer-reviewed)abstract
    • Using positron emission tomographic measurements of regional cerebral blood flow, we report activation of a medial pons area in humans during acoustic startle stimulation. Eight healthy volunteers were scanned during rest and when presented startle-eliciting stimuli. We performed a theory-driven directed search for activity in the nucleus reticularis pontis caudalis, situated in the pons. Because habituation of cerebellar activity during acoustic startle repetition has been reported [Timmann, D., Musso, C., Kolb, F.P., Rijntjes, M., Juptner, M., Muller, S.P., Diener, H.C. & Weiller, C. (1998) J. Neurol. Neurosurg. Psychiatry 65, 771-773], we also predicted habituation in the cerebellum and in the pons as a function of startle repetition. Measurements of eye electromyography validated the presence of a startle response and its habituation. Analysis of regional cerebral blood flow revealed higher neural activity during startle stimulation than at rest in a medial pons area consistent with the location of the pontine reticular nucleus. As a consequence of startle repetition, regional cerebral blood flow increased in the medial cerebellum, and habituated in the ventral cerebellum and in a ventral pons area separate from the pontine reticular nucleus. In the ventral pons, but not in the pontine reticular nucleus, regional cerebral blood flow and the startle reflex were positively correlated. In the cerebellum both positive and negative correlations with the startle reflex were observed. Thus we conclude that the neurofunctional correlates of the startle circuit and its habituation in humans are similar to that previously described in animals.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Westberg, Karl-Gunnar, et al. (author)
  • Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit
  • 2001
  • In: European Journal of Neuroscience. - : Wiley-Blackwell. - 0953-816X .- 1460-9568. ; 14:10, s. 1709-1718
  • Journal article (peer-reviewed)abstract
    • In this study, we describe functional characteristics of neurons forming networks generating oral ingestive motor behaviours. Neurons in medial reticular nuclei on the right side of the brainstem between the trigeminal and hypoglossal motor nuclei were recorded in anaesthetized and paralysed rabbits during two types of masticatory-like motor patterns induced by electrical stimulation of the left (contralateral) or right (ipsilateral) cortical masticatory areas. Sixty-seven neurons in nucleus reticularis pontis caudalis (nPontc), nucleus reticularis parvocellularis (nParv), and nucleus reticularis gigantocellularis (Rgc) were studied. These were classified as phasic or tonic depending on their firing pattern during the fictive jaw movement cycle. Phasic neurons located in the dorsal part of nPontc were active during the jaw opening phase, whilst those in dorsal nParv tended to fire during the closing phase. In most neurons, burst duration and firing frequency changed between the two motor patterns, but there was little change in phase of firing. Tonic units were mainly recorded in the ventral half of nPontc, and at the junction between Rgc and caudal nParv. Cortical inputs with short latency from the contralateral masticatory area were more frequent in phasic (82%) than tonic (44%) neurons, whilst inputs from the ipsilateral cortex were equal in the two subgroups (57% and 56%). Phasic neurons had significantly shorter mean contralateral than ipsilateral cortical latencies, whilst there was no difference among tonic neurons. Intra- and perioral primary afferent inputs activated both types of neurons at oligo-synaptic latencies. Our results show that subpopulations of neurons in medial reticular nuclei extending from the caudal part of the trigeminal motor nucleus to the rostral third of the hypoglossal motor nucleus are active during the fictive masticatory motor behaviour. Unlike masticatory neurons in the lateral tegmentum, the medial subpopulations are spatially organized according to discharge pattern.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  • Adermark, Louise, 1974, et al. (author)
  • Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity.
  • 2009
  • In: The European journal of neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 29:1, s. 32-41
  • Journal article (peer-reviewed)abstract
    • Long-term depression (LTD) at striatal synapses is mediated by postsynaptic endocannabinoid (eCB) release and presynaptic cannabinoid 1 receptor (CB(1)R) activation. Previous studies have indicated that eCB mobilization at excitatory synapses might be regulated by afferent activation. To further address the role of neuronal activity in synaptic plasticity we examined changes in synaptic strength induced by the L-type calcium channel activator 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL 64176, FPL) at glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses in the striatum. We found that the basic mechanisms for FPL-mediated eCB signaling are the same at glutamatergic and GABAergic synapses. FPL-induced LTD (FPL-LTD) was blocked in slices treated with the CB(1)R antagonist AM251 (2 microm), but established depression was not reversed by AM251. FPL-LTD was temperature dependent, blocked by protein translation inhibitors and prevented by intracellular loading of the anandamide transporter inhibitor VDM11 (10 microm) at both glutamatergic and GABAergic synapses. FPL-LTD at glutamatergic synapses required paired-pulse afferent stimulation, while FPL-LTD at GABAergic synapses could be induced even in the absence of explicit afferent activation. By evaluating tetrodotoxin-insensitive spontaneous inhibitory postsynaptic currents we found that neuronal firing is vital for eCB release and LTD induction at GABAergic synapses, but not for short-term depression induced by CB(1)R agonist. The data presented here suggest that the level of neuronal firing regulates eCB signaling by modulating release from the postsynaptic cell, as well as interacting with presynaptic mechanisms to induce LTD at both glutamatergic and GABAergic synapses in the striatum.
  •  
36.
  • Agosti, Francina, et al. (author)
  • Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons
  • 2014
  • In: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 40:5, s. 2755-2765
  • Journal article (peer-reviewed)abstract
    • The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 +/- 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the G(s) pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 +/- 2.0% of native N-type calcium currents and 55.4 +/- 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. Invivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  • Amandusson, Åsa, et al. (author)
  • Colocalization of oestrogen receptor immunoreactivity and preproenkephalin mRNA expression fo neurons in the superficial laminae of the spinal and medullary dorsal horn of rats
  • 1996
  • In: Eur J Neurosci. - : Wiley InterScience. ; 8:11, s. 2440-2445
  • Journal article (peer-reviewed)abstract
    • A double-labelling procedure combining immunohistochemical staining with in situ hybridization using a radiolabelled cRNA probe was employed to demonstrate oestrogen receptor-like immunoreactivity and preproenkephalin-A mRNA in the medullary and spinal dorsal horn of female rats. Both markers labelled large numbers of neurons in the substantia gelatinosa and its trigeminal homologue. Many of these neurons were double-labelled, displaying both oestrogen receptor-like-immunoreactivity and preproenkephalin-A mRNA; cell counts showed that 40-60% of the of the oestrogen receptor-like-immunoreactive cells in the superficial laminae also were labelled for preproenkephalin-A mRNA, and that 60-70% of the preproenkephalin-A mRNA-labelled neurons in the same laminae displayed oestrogen receptor-like immunoreactivity. Previous studies have shown that oestrogen receptors can bind to the promoter region of the preproenkephalin-A gene, and studies on the hypothalamus have demonstrated that oestrogen regulates enkephalin expression in select neuronal populations. The present results demonstrate that enkephalinergic neurons in the superficial dorsal horn contain oestrogen receptors and suggest that oestrogen may play an important role in the modulation of sensory and nociceptive processing in the lower medulla and spinal cord.
  •  
43.
  •  
44.
  • Andersson, Daniel, et al. (author)
  • Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission
  • 2006
  • In: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 24:2, s. 617-624
  • Journal article (peer-reviewed)abstract
    • Previous data indicate that the release of somatodendritic dopamine in substantia nigra influences motor activity and coordination, but the relative importance of somatodendritic dopamine release vs. terminal striatal dopamine release remains to be determined. We utilized simultaneous measurement of dopamine neurotransmission by microdialysis and motor performance assessment by rotarod test to investigate the effects of local dopamine depletion in rats. The vesicular monoamine transporter inhibitor tetrabenazine (100 µm) was administered locally in substantia nigra as well as in striatum. Nigral tetrabenazine administration decreased nigral dopamine dialysate concentrations to 7% of baseline and whole-tissue dopamine content by 60%. Nigral dopamine depletion was associated with a reduction in motor performance to 73 ± 6% of pretreatment value, but did not alter dialysate dopamine concentrations in the ipsilateral striatum. Striatal tetrabenazine administration decreased striatal dopamine dialysate concentrations to 5% of baseline and doubled the somatodendritic dopamine response to motor activity, but it was not associated with changes in motor performance or dopamine content in striatal tissue. Simultaneous treatment of substantia nigra and striatum reduced motor performance to 58 ± 5% of the pretreatment value. The results of this study indicate that partial depletion of nigral dopamine stores can significantly impair motor functions, and that increased nigral dopamine release can counteract minor impairments of striatal dopamine transmission.
  •  
45.
  • Andersson, M, et al. (author)
  • Time course of striatal DeltaFosB-like immunoreactivity and prodynorphin mRNA levels after discontinuation of chronic dopaminomimetic treatment.
  • 2003
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 17:3, s. 661-666
  • Journal article (peer-reviewed)abstract
    • DFosB-like proteins are particularly stable transcription factors that accumulate in the brain in response to chronic perturbations. In this study we have compared the time-course of striatal FosB/DFosB-like immunoreactivity and prodynorphin mRNA expression after discontinuation of chronic cocaine treatment to intact rats and chronic L-DOPA treatment to unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. The animals were killed between 3 h and 16 days after the last drug injection. In both treatment paradigms, the druginduced FosB/DFosB immunoreactivity remained significantly elevated in the caudate putamen even at the longest withdrawal period examined. The concomitant upregulation of prodynorphin mRNA, a target of DFosB, paralleled the time-course of DFosB-like immunoreactivity in the 6-OHDA-lesion/L-DOPA model, but was more transient in animals treated with cocaine. These results suggest that DFosB-like proteins have exceptional in vivo stability. In the dopamine-denervated striatum, these proteins may exert sustained effects on the expression of their target genes long after discontinuation of L-DOPA pharmacotherapy.
  •  
46.
  •  
47.
  • Apps, R, et al. (author)
  • Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum
  • 2000
  • In: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 12:1, s. 205-214
  • Journal article (peer-reviewed)abstract
    • The paravermal cerebellar cortex contains three spatially separate zones (the C1, C3 and Y zones) which form a functionally coupled system involved in the control of voluntary limb movements. A series of 'modules' has been postulated, each defined by a set of olivary neurons with similar receptive fields, the cortical microzones innervated by these neurons and the group of deep cerebellar nuclear neurons upon which the microzones converge. A key feature of this modular organization is a correspondence between cortical input and output, irrespective of the zonal identity of the microzone. This was tested directly using a combined electrophysiological and bi-directional tracer technique in barbiturate-anaesthetized cats. During an initial operation, small injections of a mix of retrograde and anterograde tracer material (red beads combined with Fluoro-Ruby or green beads combined with biotinylated dextran amine or Fluoro-Emerald) were made into areas of the medial C1 and medial C3 zones in cerebellar lobule V characterized by olivo-cerebellar input from the ventral forelimb. The inferior olive and the deep cerebellar nuclei were then scrutinized for retrogradely labelled cells and anterogradely labelled axon terminals, respectively. For individual experiments, the degree of C1-C3 zone terminal field overlap in the nucleus interpositus anterior was plotted as a function of either the regional overlap of single-labelled cells or the proportion of double-labelled cells in the dorsal accessory olive. The results were highly positively correlated, indicating that cortico-nuclear convergence between parts of the two zones is in close proportion to the corresponding olivo-cerebellar divergence, entirely consistent with the modular hypothesis.
  •  
48.
  •  
49.
  •  
50.
  • Athanassiadis, Tuija, 1971-, et al. (author)
  • Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat
  • 2005
  • In: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 22:12, s. 3099-3110
  • Journal article (peer-reviewed)abstract
    • A population of neurons in the trigeminal principal sensory nucleus (NVsnpr) fire rhythmically during fictive mastication induced in the in vivo rabbit. To elucidate whether these neurons form part of the central pattern generator (CPG) for mastication, we performed intracellular recordings in brainstem slices taken from young rats. Two cell types were defined, nonbursting (63%) and bursting (37%). In response to membrane depolarization, bursting cells, which dominated in the dorsal part of the NVsnpr, fired an initial burst followed by single spikes or recurring bursts. Non-bursting neurons, scattered throughout the nucleus, fired single action potentials. Microstimulation applied to the trigeminal motor nucleus (NVmt), the reticular border zone surrounding the NVmt, the parvocellular reticular formation or the nucleus reticularis pontis caudalis (NPontc) elicited a postsynaptic potential in 81% of the neurons tested for synaptic inputs. Responses obtained were predominately excitatory and sensitive to glutamatergic antagonists DNQX and/or APV. Some inhibitory and biphasic responses were also evoked. Bicuculline methiodide or strychnine blocked the IPSPs indicating that they were mediated by GABA(A) or glycinergic receptors. About one-third of the stimulations activated both types of neurons antidromically, mostly from the masseteric motoneuron pool of NVmt and dorsal part of NPontc. In conclusion, our new findings show that some neurons in the dorsal NVsnpr display both firing properties and axonal connections which support the hypothesis that they may participate in masticatory pattern generation. Thus, the present data provide an extended basis for further studies on the organization of the masticatory CPG network.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 509
Type of publication
journal article (440)
conference paper (66)
research review (3)
Type of content
peer-reviewed (430)
other academic/artistic (79)
Author/Editor
Fuxe, K (21)
Hokfelt, T (20)
Grillner, S (16)
Jankowska, Elzbieta (15)
Kirik, Deniz (14)
Ceccatelli, S (13)
show more...
Björklund, Anders (12)
Lindvall, Olle (11)
Ernfors, P (10)
Kristensson, K (10)
Lindholm, Dan (9)
Olson, L (9)
Harkany, T (9)
Arenas, E (9)
Fisone, G (9)
El Manira, A (9)
Korhonen, Laura (8)
Meister, B (8)
Innocenti, GM (8)
Svenningsson, P (7)
Piehl, F (7)
Forssberg, H (7)
Hammar, Ingela, 1964 (7)
Ehrsson, HH (6)
Ogren, SO (6)
Fredholm, BB (6)
Kokaia, Zaal (6)
Brundin, Patrik (6)
Wieloch, Tadeusz (6)
Brodin, L (6)
Blomgren, Klas, 1963 (6)
Hill, RH (6)
Sommer, W. (5)
Perlmann, T (5)
Johansson, B (5)
Lendahl, U (5)
Hanse, Eric, 1962 (5)
Spenger, C (5)
Marklund, Niklas (5)
Björkman, Anders (5)
Rosén, Birgitta (5)
Kokaia, Merab (5)
Roland, PE (5)
Bartfai, T (5)
Kullander, Klas (5)
Eriksson, Peter S, 1 ... (5)
Mohapel, Paul (5)
Orlovsky, GN (5)
Edwards, RH (5)
Liljequist, S (5)
show less...
University
Karolinska Institutet (290)
Lund University (89)
University of Gothenburg (55)
Uppsala University (49)
Linköping University (25)
Umeå University (24)
show more...
Royal Institute of Technology (9)
University of Skövde (3)
Stockholm University (2)
University of Gävle (2)
Chalmers University of Technology (2)
Stockholm School of Economics (1)
The Swedish School of Sport and Health Sciences (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (509)
Research subject (UKÄ/SCB)
Medical and Health Sciences (186)
Natural sciences (9)
Social Sciences (4)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view