SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1053 8119 "

Search: L773:1053 8119

  • Result 1-50 of 474
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Petersson, KM, et al. (author)
  • Instruction-specific brain activations during episodic encoding: a generalized level of processing effect
  • 2003
  • In: NeuroImage. - 1095-9572 .- 1053-8119. ; 20:3, s. 1795-1810
  • Journal article (peer-reviewed)abstract
    • In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.
  •  
2.
  •  
3.
  • Friman, Ola, et al. (author)
  • Adaptive analysis of fMRI data
  • 2003
  • In: NeuroImage. - 1053-8119 .- 1095-9572. ; 19:3, s. 837-845
  • Journal article (peer-reviewed)abstract
    • This article introduces novel and fundamental improvements of fMRI data analysis. Central is a technique termed constrained canonical correlation analysis, which can be viewed as a natural extension and generalization of the popular general linear model method. The concept of spatial basis filters is presented and shown to be a very successful way of adaptively filtering the fMRI data. A general method for designing suitable hemodynamic response models is also proposed and incorporated into the constrained canonical correlation approach. Results that demonstrate how each of these parts significantly improves the detection of brain activity, with a computation time well within limits for practical use, are provided.
  •  
4.
  • Huang, Chaorui, et al. (author)
  • Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment.
  • 2003
  • In: NeuroImage. - 1053-8119. ; 19:3, s. 1137-1144
  • Journal article (peer-reviewed)abstract
    • This study aimed to explore the heterogeneity of mild cognitive impairment (MCI) and detect differences in regional cerebral blood flow (rCBF) and cognitive function between progressive mild cognitive impairment (PMCI) and stable mild cognitive impairment (SMCI) in order to identify specific changes useful for early diagnosis of dementia. SPECT was performed in 82 MCI subjects and 20 controls using Tc-99m hexamethylpropyleneamine oxime. Cognitive functions were tested in five domains which included episodic memory, semantic memory, visuospatial function, attention, and general cognitive function. After the initial examination, MCI subjects were clinically followed for an average of 2 years. Twenty-eight subjects progressed to dementia and were defined as PMCI at baseline and 54 subjects remained stable and were defined as SMCI at baseline. The baseline rCBF and cognitive function of PMCI, SMCI, and controls were compared. PMCI had decreased relative rCBF in the parietal lobes and increased relative rCBF in prefrontal cortex compared to SMCI and controls at baseline. The cognitive function of PMCI was more severely impaired compared to SMCI with respect to episodic memory and visuospatial and general cognitive function. Both SPECT and neuropsychological tests had moderate discriminant function between PMCI and SMCI at baseline with the area under the receiver operating characteristic (ROC) curve at 75–77%. The combination of these two methods improved the diagnostic accuracy with the area under the ROC curve at 82–84%. Semantic memory and attention were negatively correlated with left prefrontal relative rCBF among the study population. The results show that the clinical heterogeneity of MCI is reflected in different patterns of psychological and CBF changes. Combined SPECT investigation and neuropsychological testing might predict the future development of dementia in patients with MCI.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Abramian, David, 1992-, et al. (author)
  • Diffusion-Informed Spatial Smoothing of fMRI Data in White Matter Using Spectral Graph Filters
  • 2021
  • In: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 237
  • Journal article (peer-reviewed)abstract
    • Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detachability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject’s unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project’s 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.
  •  
10.
  • Afzali, Maryam, et al. (author)
  • SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
  • 2021
  • In: NeuroImage. - : Elsevier BV. - 1053-8119. ; 237
  • Journal article (peer-reviewed)abstract
    • The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called ’b-tensor’ encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of 7μm, while the second, pure Monte Carlo simulations, yielded a lower limit of 3μm and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.
  •  
11.
  •  
12.
  • Ahmadi, Khazar, et al. (author)
  • Triple visual hemifield maps in a case of optic chiasm hypoplasia
  • 2020
  • In: NeuroImage. - : Elsevier BV. - 1053-8119. ; 215
  • Journal article (peer-reviewed)abstract
    • In humans, each hemisphere comprises an overlay of two visuotopic maps of the contralateral visual field, one from each eye. Is the capacity of the visual cortex limited to these two maps or are plastic mechanisms available to host more maps? We determined the cortical organization of the visual field maps in a rare individual with chiasma hypoplasia, where visual cortex plasticity is challenged to accommodate three hemifield maps. Using high-resolution fMRI at 7T and diffusion-weighted MRI at 3T, we found three hemiretinal inputs, instead of the normal two, to converge onto the left hemisphere. fMRI-based population receptive field mapping of the left V1–V3 at 3T revealed three superimposed hemifield representations in the left visual cortex, i.e. two representations of opposing visual hemifields from the left eye and one right hemifield representation from the right eye. We conclude that developmental plasticity including the re-wiring of local intra- and cortico-cortical connections is pivotal to support the coexistence and functioning of three hemifield maps within one hemisphere.
  •  
13.
  • Ahs, Fredrik, et al. (author)
  • High-frequency heart rate variability and cortico-striatal activity in men and women with social phobia
  • 2009
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 47:3, s. 815-820
  • Journal article (peer-reviewed)abstract
    • Identifying brain systems that regulate or modulate autonomic nervous system functions may identify pathways through which psychosocial factors can influence health and disease. Reduced high-frequency heart rate variability (HF-HRV) characterizes anxiety disordered patients and is predictive of adverse myocardial events. Sex differences in the prevalence of anxiety disorders and cardiac diseases implicate the possibility of sex specific neural regulation of HF-HRV. We investigated the correlation between HF-HRV and regional cerebral blood flow (rCBF) in 28 subjects (15 women) with social phobia undergoing a stressful public speaking task. Regional CBF was measured with [(15)O] water positron emission tomography. Stress induced rCBF correlated positively with HF-HRV in the right supra genual anterior cingulate cortex Brodmann's area (BA) 32, the right head of the caudate nucleus and bilaterally in the medial prefrontal cortex (BA10), extending into the dorsolateral prefrontal cortex (BA46) in the left hemisphere. Men showed larger positive co-variation in the caudate than women. These findings underscore the importance of the emotional division of the anterior cingulate cortex, the prefrontal cortex and the striatum in cardiovagal activity. The study replicates and extends results from published functional neuroimaging studies on cardioregulatory or modulatory areas in healthy subjects to men and women with social phobia. Moreover, caudate functions, possibly related to dopaminergic neurotransmission, have sexually dimorphic effects on vagal modulation of the heart.
  •  
14.
  •  
15.
  • Akram, Harith, et al. (author)
  • Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease
  • 2017
  • In: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 158, s. 332-345
  • Journal article (peer-reviewed)abstract
    • Objectives: Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy.Methods: High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy.Results: All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H-2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -3(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity.Interpretation: These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  • Andersen, L. M., et al. (author)
  • On-scalp MEG SQUIDs are sensitive to early somatosensory activity unseen by conventional MEG
  • 2020
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 221
  • Journal article (peer-reviewed)abstract
    • Magnetoencephalography (MEG) has a unique capacity to resolve the spatio-temporal development of brain activity from non-invasive measurements. Conventional MEG, however, relies on sensors that sample from a distance (20–40 mm) to the head due to thermal insulation requirements (the MEG sensors function at 4 K in a helmet). A gain in signal strength and spatial resolution may be achieved if sensors are moved closer to the head. Here, we report a study comparing measurements from a seven-channel on-scalp SQUID MEG system to those from a conventional (in-helmet) SQUID MEG system. We compared the spatio-temporal resolution between on-scalp and conventional MEG by comparing the discrimination accuracy for neural activity patterns resulting from stimulating five different phalanges of the right hand. Because of proximity and sensor density differences between on-scalp and conventional MEG, we hypothesized that on-scalp MEG would allow for a more high-resolved assessment of these activity patterns, and therefore also a better classification performance in discriminating between neural activations from the different phalanges. We observed that on-scalp MEG provided better classification performance during an early post-stimulus period (10–20 ms). This corresponded to the electroencephalographic (EEG) component P16/N16 and was an unexpected observation as this component is usually not observed in conventional MEG. This finding shows that on-scalp MEG enables a richer registration of the cortical signal, indicating a sensitivity to what are potentially sources in the thalamo-cortical radiation. We had originally expected that on-scalp MEG would provide better classification accuracy based on activity in proximity to the P60m component compared to conventional MEG. This component indeed allowed for the best classification performance for both MEG systems (60–75%, chance 50%). However, we did not find that on-scalp MEG allowed for better classification than conventional MEG at this latency. We suggest that this absence of differences is due to the limited sensor coverage in the recording, in combination with our strategy for positioning the on-scalp MEG sensors. We show how the current sensor coverage may have limited our chances to register the necessary between-phalange source field dissimilarities for fair hypothesis testing, an approach we otherwise believe to be useful for future benchmarking measurements. © 2020 The Authors
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Andersson, Patrik, et al. (author)
  • Visual imagery during real-time fMRI neurofeedback from occipital and superior parietal cortex
  • 2019
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 200, s. 332-343
  • Journal article (peer-reviewed)abstract
    • Visual imagery has been suggested to recruit occipital cortex via feedback projections from fronto-parietal regions, suggesting that these feedback projections might be exploited to boost recruitment of occipital cortex by means of real-time neurofeedback. To WA this prediction, we instructed a group of healthy participants to perform peripheral visual imagery while they received real-time auditory feedback based on the BOLD signal from either early visual cortex or the medial superior parietal lobe. We examined the amplitude and temporal aspects of the BOLD response in the two regions. Moreover, we compared the impact of self-rated mental focus and vividness of visual imagery on the BOLD responses in these two areas. We found that both early visual cortex and the medial superior parietal cortex are susceptible to auditory neurofeedback within a single feedback session per region. However, the signal in parietal cortex was sustained for a longer time compared to the signal in occipital cortex. Moreover, the BOLD signal in the medial superior parietal lobe was more affected by focus and vividness of the visual imagery than early visual cortex. Our results thus demonstrate that (a) participants can learn to self-regulate the BOLD signal in early visual and parietal cortex within a single session, (b) that different nodes in the visual imagery network respond differently to neurofeedback, and that (c) responses in parietal, but not in occipital cortex are susceptible to self-rated vividness of mental imagery. Together, these results suggest that medial superior parietal cortex might be a suitable candidate to provide real-time feedback to patients suffering from visual field defects.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Awad, Amar, et al. (author)
  • Deep brain stimulation in the caudal zona incerta modulates the sensorimotor cerebello-cerebral circuit in essential tremor
  • 2020
  • In: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 209
  • Journal article (peer-reviewed)abstract
    • Essential tremor is effectively treated with deep brain stimulation (DBS), but the neural mechanisms underlying the treatment effect are poorly understood. Essential tremor is driven by a dysfunctional cerebello-thalamo-cerebral circuit resulting in pathological tremor oscillations. DBS is hypothesised to interfere with these oscillations at the stimulated target level, but it is unknown whether the stimulation modulates the activity of the cerebello-thalamo-cerebral circuit during different task states (with and without tremor) in awake essential tremor patients. To address this issue, we used functional MRI in 16 essential tremor patients chronically implanted with DBS in the caudal zona incerta. During scanning, the patients performed unilateral tremor-inducing postural holding and pointing tasks as well as rest, with contralateral stimulation turned On and Off.We show that DBS exerts both task-dependent as well as task-independent modulation of the sensorimotor cerebello-cerebral regions (p ​≤ ​0.05, FWE cluster-corrected for multiple comparisons). Task-dependent modulation (DBS ​× ​task interaction) resulted in two patterns of stimulation effects. Firstly, activity decreases (blood oxygen level-dependent signal) during tremor-inducing postural holding in the primary sensorimotor cortex and cerebellar lobule VIII, and activity increases in the supplementary motor area and cerebellar lobule V during rest (p ​≤ ​0.05, post hoc two-tailed t-test). These effects represent differences at the effector level and may reflect DBS-induced tremor reduction since the primary sensorimotor cortex, cerebellum and supplementary motor area exhibit less motor task-activity as compared to the resting condition during On stimulation. Secondly, task-independent modulation (main effect of DBS) was observed as activity increase in the lateral premotor cortex during all motor tasks, and also during rest (p ​≤ ​0.05, post hoc two-tailed t-test). This task-independent effect may mediate the therapeutic effects of DBS through the facilitation of the premotor control over the sensorimotor circuit, making it less susceptible to tremor entrainment.Our findings support the notion that DBS in essential tremor is modulating the sensorimotor cerebello-cerebral circuit, distant to the stimulated target, and illustrate the complexity of stimulation mechanisms by demonstrating task-dependent as well as task-independent actions in cerebello-cerebral regions.
  •  
37.
  •  
38.
  • Becker, Nina, et al. (author)
  • Structural brain correlates of associative memory in older adults
  • 2015
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 118, s. 146-153
  • Journal article (peer-reviewed)abstract
    • Associative memory involves binding two or more items into a coherent memory episode. Relative to memory for single items, associative memory declines greatly in aging. However, older individuals vary substantially in their ability to memorize associative information. Although functional studies link associative memory to the medial temporal lobe (MTL) and prefrontal cortex (PFC), little is known about how volumetric differences in MTL and PFC might contribute to individual differences in associative memory. We investigated regional gray-matter volumes related to individual differences in associative memory in a sample of healthy older adults (n = 54; age = 60 years). To differentiate item from associative memory, participants intentionally learned face-scene picture pairs before performing a recognition task that included single faces, scenes, and face-scene pairs. Gray-matter volumes were analyzed using voxel-based morphometry region-of-interest (ROI) analyses. To examine volumetric differences specifically for associative memory, item memory was controlled for in the analyses. Behavioral results revealed large variability in associative memory that mainly originated from differences in false-alarm rates. Moreover, associative memory was independent of individuals' ability to remember single items. Older adults with better associative memory showed larger gray-matter volumes primarily in regions of the left and right lateral PFC. These findings provide evidence for the importance of PFC in intentional learning of associations, likely because of its involvement in organizational and strategic processes that distinguish older adults with good from those with poor associative memory.
  •  
39.
  • Becker, Nina, et al. (author)
  • Structure-function associations of successful associative encoding
  • 2019
  • In: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 201
  • Journal article (peer-reviewed)abstract
    • Functional magnetic resonance imaging (MRI) studies have demonstrated a critical role of hippocampus and inferior frontal gyrus (IFG) in associative memory. Similarly, evidence from structural MRI studies suggests a relationship between gray-matter volume in these regions and associative memory. However, how brain volume and activity relate to each other during associative-memory formation remains unclear. Here, we used joint independent component analysis (jICA) to examine how gray-matter volume and brain activity would be associated during associative encoding, especially in medial-temporal lobe (MTL) and IFG. T1-weighted images were collected from 27 young adults, and functional MRI was employed during intentional encoding of object pairs. A subsequent recognition task tested participants' memory performance. Unimodal analyses using voxel-based morphometry revealed that participants with better associative memory showed larger gray-matter volume in left anterior hippocampus. Results from the jICA revealed one component that comprised a covariance pattern between gray-matter volume in anterior and posterior MTL and encoding-related activity in IFG. Our findings suggest that gray matter within the MTL modulates distally distinct parts of the associative encoding circuit, and extend previous studies that demonstrated MTL-IFG functional connectivity during associative memory tasks.
  •  
40.
  • Behjat, Hamid, et al. (author)
  • Anatomically-adapted Graph Wavelets for Improved Group-level fMRI Activation Mapping
  • 2015
  • In: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119. ; 123:Online 07 June 2015, s. 185-199
  • Journal article (peer-reviewed)abstract
    • A graph based framework for fMRI brain activation mapping is presented. The approach exploits the spectral graph wavelet transform (SGWT) for the purpose of defining an advanced multi-resolutional spatial transformation for fMRI data. The framework extends wavelet based SPM (WSPM), which is an alternative to the conventional approach of statistical parametric mapping (SPM), and is developed specifically for group-level analysis. We present a novel procedure for constructing brain graphs, with subgraphs that separately encode the structural connectivity of the cerebral and cerebellar grey matter (GM), and address the inter-subject GM variability by the use of template GM representations. Graph wavelets tailored to the convoluted boundaries of GM are then constructed as a means to implement a GM-based spatial transformation on fMRI data. The proposed approach is evaluated using real as well as semi-synthetic multi-subject data. Compared to SPM and WSPM using classical wavelets, the proposed approach shows superior type-I error control. The results on real data suggest a higher detection sensitivity as well as the capability to capture subtle, connected patterns of brain activity.
  •  
41.
  • Bellander, Martin, et al. (author)
  • Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary
  • 2016
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 131, s. 205-213
  • Journal article (peer-reviewed)abstract
    • Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10 weeks. T-1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N = 33) compared to an active control group (N = 23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  • Björnsdotter, Malin, et al. (author)
  • A Monte Carlo method for locally multivariate brain mapping.
  • 2011
  • In: NeuroImage. - : Elsevier BV. - 1095-9572 .- 1053-8119.
  • Journal article (peer-reviewed)abstract
    • Locally multivariate approaches to functional brain mapping offer a highly appealing complement to conventional statistics, but require restrictive region-of-interest hypotheses, or, in exhaustive search forms (such as the "searchlight" algorithm; Kriegeskorte et al., 2006), are excessively computer intensive. We therefore propose a non-restrictive, comparatively fast yet highly sensitive method based on Monte Carlo approximation principles where locally multivariate maps are computed by averaging across voxelwise condition-discriminative information obtained from repeated stochastic sampling of fixed-size search volumes. On simulated data containing discriminative regions of varying size and contrast-to-noise ratio (CNR), the Monte Carlo method reduced the required computer resources by as much as 75% compared to the searchlight with no reduction in mapping performance. Notably, the Monte Carlo mapping approach not only outperformed the general linear method (GLM), but also produced higher discriminative voxel detection scores than the searchlight irrespective of classifier (linear or nonlinear support vector machine), discriminative region size or CNR. The improved performance was explained by the information-average procedure, and the Monte Carlo approach yielded mapping sensitivities of a few percent lower than an information-average exhaustive search. Finally, we demonstrate the utility of the algorithm on whole-brain, multi-subject functional magnetic resonance imaging (fMRI) data from a tactile study, revealing that the central representation of gentle touch is spatially distributed in somatosensory, insular and visual regions.
  •  
46.
  •  
47.
  • Bollack, Ariane, et al. (author)
  • Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies
  • 2023
  • In: NeuroImage. - 1053-8119. ; 280
  • Journal article (peer-reviewed)abstract
    • Purpose: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. Methods: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aβ load), the Aβ-PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aβ accumulation. Results: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. Conclusion: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted.
  •  
48.
  • Boraxbekk, Carl-Johan, 1980-, et al. (author)
  • Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default mode network : a multimodal approach
  • 2016
  • In: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 131, s. 133-141
  • Journal article (peer-reviewed)abstract
    • One step toward healthy brain aging may be to entertain a physically active lifestyle. Studies investigating physical activity effects on brain integrity have, however, mainly been based on single brain markers, and few used a multimodal imaging approach. In the present study, we used cohort data from the Betula study to examine the relationships between scores reflecting current and accumulated physical activity and brain health. More specifically, we first examined if physical activity scores modulated negative effects of age on seven resting state networks previously identified by Salami, Pudas, and Nyberg (2014). The results revealed that one of the most age-sensitive RSN was positively altered by physical activity, namely, the posterior default-mode network involving the posterior cingulate cortex (PCC). Second, within this physical activity-sensitive RSN, we further analyzed the association between physical activity and gray matter (GM) volumes, white matter integrity, and cerebral perfusion using linear regression models. Regions within the identified DMN displayed larger GM volumes and stronger perfusion in relation to both current and 10-years accumulated scores of physical activity. No associations of physical activity and white matter integrity were observed. Collectively, our findings demonstrate strengthened PCC–cortical connectivity within the DMN, larger PCC GM volume, and higher PCC perfusion as a function of physical activity. In turn, these findings may provide insights into the mechanisms of how long-term regular exercise can contribute to healthy brain aging.
  •  
49.
  • Brehmer, Yvonne, et al. (author)
  • Neural correlates of training-related working-memory gains in old age
  • 2011
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 58:4, s. 1110-1120
  • Journal article (peer-reviewed)abstract
    • Working memory (WM) functioning declines in old age. Due to its impact on many higher-order cognitive functions, investigating whether training can modify WM performance has recently been of great interest. We examined the relationship between behavioral performance and neural activity following five weeks of intensive WM training in 23 healthy older adults (M = 63.7 years). 12 participants received adaptive training (i.e. individually adjusted task difficulty to bring individuals to their performance maximum), whereas the others served as active controls (i.e. fixed low-level practice). Brain activity was measured before and after training, using fMRI, while subjects performed a WM task under two difficulty conditions. Although there were no training-related changes in WM during scanning, neocortical brain activity decreased post training and these decreases were larger in the adaptive training group than in the controls under high WM load. This pattern suggests intervention-related increases in neural efficiency. Further, there were disproportionate gains in the adaptive training group in trained as well as in non-trained (i.e. attention, episodic memory) tasks assessed outside the scanner, indicating the efficacy of the training regimen. Critically, the degree of training-related changes in brain activity (i.e. neocortical decreases and subcortical increases) was related to the maximum gain score achieved during the intervention period. This relationship suggests that the decreased activity, but also specific activity increases, observed were functionally relevant.
  •  
50.
  • Brehmer, Yvonne, et al. (author)
  • The importance of the ventromedial prefrontal cortex for associative memory in older adults : A latent structural equation analysis
  • 2020
  • In: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 209
  • Journal article (peer-reviewed)abstract
    • Older adults show relatively minor age-related decline in memory for single items, while their memory for associations is markedly reduced. Inter-individual differences in memory function in older adults are substantial but the neurobiological underpinnings of such differences are not well understood. In particular, the relative importance of inter-individual differences in the medio-temporal lobe (MTL) and the lateral prefrontal cortex (PFC) for associative and item recognition in older adults is still ambiguous. We therefore aimed to first establish the distinction between inter-individual differences in associative memory (recollection-based) performance and item memory (familiarity-based) performance in older adults and subsequently link these two constructs to differences in cortical thickness in the MTL and lateral PFC regions, in a latent structural equation modelling framework. To this end, a sample of 160 older adults (65-75 years old) performed three intentional itemassociative memory tasks, of which a subsample (n = 72) additionally had cortical thickness measures in MTL and PFC regions of interest available. The results provided support for a distinction between familiarity-based item memory and recollection-based associative memory performance in older adults. Cortical thickness in the ventro-medial prefrontal cortex was positively correlated with associative recognition performance, above and beyond any relationship between item recognition performance and cortical thickness in the same region and between associative recognition performance and brain structure in the MTL (parahippocampus). The findings highlight the relative importance of the ventromedial prefrontal cortex in allowing for intentional recollection-based associative memory functioning in older adults.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 474
Type of publication
journal article (391)
conference paper (78)
research review (5)
Type of content
peer-reviewed (388)
other academic/artistic (86)
Author/Editor
Halldin, C (79)
Farde, L (50)
Gulyas, B (43)
Varrone, A (26)
Petersson, KM (23)
Ingvar, M (17)
show more...
Bäckman, Lars (17)
Fransson, P. (15)
Szczepankiewicz, Fil ... (14)
Pike, VW (14)
Nyberg, Lars (13)
Nilsson, Markus (13)
Farde, Lars (12)
Savic, I (11)
Karlsson, P (11)
Cselenyi, Z (11)
Oostenveld, R (11)
Salami, Alireza (11)
Cervenka, Simon (10)
Seneca, N (10)
Takano, A (10)
Olsson, H. (9)
Halldin, Christer (9)
Westin, Carl-Fredrik (9)
Kalpouzos, Grégoria (9)
Andersson, J (8)
van Westen, Danielle (8)
Finnema, SJ (8)
Radua, J (7)
Helms, Gunther (7)
Schou, M (7)
Rieckmann, Anna (7)
Mårtensson, Johan (7)
Ullen, F (7)
Syvänen, Stina (7)
Brehmer, Yvonne (7)
Agartz, I (6)
Wahlund, Lars-Olof (6)
Wahlund, LO (6)
Ito, H. (6)
Weiskopf, Nikolaus (6)
Andersson, Micael (6)
Knutsson, Hans (6)
Özarslan, Evren (6)
Hall, H (6)
Varnas, K (6)
Ashburner, John (6)
Lundqvist, D (6)
Finnema, S (6)
Toth, M (6)
show less...
University
Karolinska Institutet (328)
Lund University (60)
Uppsala University (51)
Stockholm University (51)
Umeå University (43)
Linköping University (37)
show more...
University of Gothenburg (24)
Royal Institute of Technology (6)
Örebro University (6)
Kristianstad University College (4)
University of Skövde (4)
Chalmers University of Technology (4)
Mid Sweden University (2)
The Swedish School of Sport and Health Sciences (2)
Mälardalen University (1)
Stockholm School of Economics (1)
RISE (1)
show less...
Language
English (474)
Research subject (UKÄ/SCB)
Medical and Health Sciences (171)
Social Sciences (43)
Engineering and Technology (28)
Natural sciences (26)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view