SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1868 7083 "

Search: L773:1868 7083

  • Result 1-50 of 75
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Jufvas, Åsa, et al. (author)
  • Global differences in specific histone H3 methylation are associated with overweight and type 2 diabetes.
  • 2013
  • In: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 5:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Epidemiological evidence indicates yet unknown epigenetic mechanisms underlying a propensity for overweight and type 2 diabetes. We analyzed the extent of methylation at lysine 4 and lysine 9 of histone H3 in primary human adipocytes from 43 subjects using modification-specific antibodies.RESULTS: The level of lysine 9 dimethylation was stable, while adipocytes from type 2 diabetic and non-diabetic overweight subjects exhibited about 40% lower levels of lysine 4 dimethylation compared with cells from normal-weight subjects. In contrast, trimethylation at lysine 4 was 40% higher in adipocytes from overweight diabetic subjects compared with normal-weight and overweight non-diabetic subjects. There was no association between level of modification and age of subjects.CONCLUSIONS: The findings define genome-wide molecular modifications of histones in adipocytes that are directly associated with overweight and diabetes, and thus suggest a molecular basis for existing epidemiological evidence of epigenetic inheritance.
  •  
5.
  •  
6.
  •  
7.
  • Ahlén Bergman, Emma, et al. (author)
  • Increased CD4+ T cell lineage commitment determined by CpG methylation correlates with better prognosis in urinary bladder cancer patients
  • 2018
  • In: Clinical Epigenetics. - : BMC. - 1868-7083 .- 1868-7075. ; 10
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Urinary bladder cancer is a common malignancy worldwide. Environmental factors and chronic inflammation are correlated with the disease risk. Diagnosis is performed by transurethral resection of the bladder, and patients with muscle invasive disease preferably proceed to radical cystectomy, with or without neoadjuvant chemotherapy. The anti-tumour immune responses, known to be initiated in the tumour and draining lymph nodes, may play a major role in future treatment strategies. Thus, increasing the knowledge of tumour-associated immunological processes is important. Activated CD4+ T cells differentiate into four main separate lineages: Th1, Th2, Th17 and Treg, and they are recognized by their effector molecules IFN-γ, IL-13, IL-17A, and the transcription factor Foxp3, respectively. We have previously demonstrated signature CpG sites predictive for lineage commitment of these four major CD4+ T cell lineages. Here, we investigate the lineage commitment specifically in tumour, lymph nodes and blood and relate them to the disease stage and response to neoadjuvant chemotherapy.RESULTS: Blood, tumour and regional lymph nodes were obtained from patients at time of transurethral resection of the bladder and at radical cystectomy. Tumour-infiltrating CD4+ lymphocytes were significantly hypomethylated in all four investigated lineage loci compared to CD4+ lymphocytes in lymph nodes and blood (lymph nodes vs tumour-infiltrating lymphocytes: IFNG -4229 bp p < 0.0001, IL13 -11 bp p < 0.05, IL17A -122 bp p < 0.01 and FOXP3 -77 bp p > 0.05). Examination of individual lymph nodes displayed different methylation signatures, suggesting possible correlation with future survival. More advanced post-cystectomy tumour stages correlated significantly with increased methylation at the IFNG -4229 bp locus. Patients with complete response to neoadjuvant chemotherapy displayed significant hypomethylation in CD4+ T cells for all four investigated loci, most prominently in IFNG p < 0.0001. Neoadjuvant chemotherapy seemed to result in a relocation of Th1-committed CD4+ T cells from blood, presumably to the tumour, indicated by shifts in the methylation patterns, whereas no such shifts were seen for lineages corresponding to IL13, IL17A and FOXP3.CONCLUSION: Increased lineage commitment in CD4+ T cells, as determined by demethylation in predictive CpG sites, is associated with lower post-cystectomy tumour stage, complete response to neoadjuvant chemotherapy and overall better outcome, suggesting epigenetic profiling of CD4+ T cell lineages as a useful readout for clinical staging.
  •  
8.
  •  
9.
  • Barazeghi, Elham, et al. (author)
  • 5-Hydroxymethylcytosine discriminates between parathyroid adenoma and carcinoma
  • 2016
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 8
  • Journal article (peer-reviewed)abstract
    • Background: Primary hyperparathyroidism is characterized by enlarged parathyroid glands due to an adenoma (80-85 %) or multiglandular disease (similar to 15 %) causing hypersecretion of parathyroid hormone (PTH) and generally hypercalcemia. Parathyroid cancer is rare (<1-5 %). The epigenetic mark 5-hydroxymethylcytosine (5hmC) is reduced in various cancers, and this may involve reduced expression of the ten-eleven translocation 1 (TET1) enzyme. Here, we have performed novel experiments to determine the 5hmC level and TET1 protein expression in 43 parathyroid adenomas (PAs) and 17 parathyroid carcinomas (PCs) from patients who had local invasion or metastases and to address a potential growth regulatory role of TET1. Results: The global 5hmC level was determined by a semi-quantitative DNA immune-dot blot assay in a smaller number of tumors. The global 5hmC level was reduced in nine PCs and 15 PAs compared to four normal tissue samples (p < 0.05), and it was most severely reduced in the PCs. By immunohistochemistry, all 17 PCs stained negatively for 5hmC and TET1 showed negative or variably heterogeneous staining for the majority. All 43 PAs displayed positive 5hmC staining, and a similar aberrant staining pattern of 5hmC and TET1 was seen in about half of the PAs. Western blotting analysis of two PCs and nine PAs showed variable TET1 protein expression levels. A significantly higher tumor weight was associated to PAs displaying a more severe aberrant staining pattern of 5hmC and TET1. Overexpression of TET1 in a colony forming assay inhibited parathyroid tumor cell growth. Conclusions: 5hmC can discriminate between PAs and PCs. Whether 5hmC represents a novel marker for malignancy warrants further analysis in additional parathyroid tumor cohorts. The results support a growth regulatory role of TET1 in parathyroid tissue.
  •  
10.
  • Bauden, Monika, et al. (author)
  • Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer.
  • 2015
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 7
  • Journal article (peer-reviewed)abstract
    • To improve the prognosis of patients with pancreatic cancer, new biomarkers are required for earlier, pre-symptomatic diagnosis. Epigenetic mutations take place at the earliest stages of tumorigenesis and therefore offer new approaches for detecting and diagnosing disease. Nucleosomes are the repeating subunits of DNA and histone proteins that constitute human chromatin. Because of their release into the circulation, intact nucleosome levels in serum or plasma can serve as diagnostic disease biomarkers, and elevated levels have been reported in various cancers. However, quantifying nucleosomes in the circulation for cancer detection has been challenging due to nonspecific elevation in sera of patients with benign diseases. Here, we report for the first time differential, disease-associated epigenetic profiles of intact cell-free nucleosomes (cfnucleosomes) containing specific DNA and histone modifications as well as histone variants circulating in the blood. The study comprised serum samples from 59 individuals, including 25 patients with resectable pancreatic cancer, 10 patients with benign pancreatic disease, and 24 healthy individuals using Nucleosomics(®), a novel ELISA method.
  •  
11.
  • Borssén, Magnus, et al. (author)
  • DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia
  • 2018
  • In: Clinical Epigenetics. - : BIOMED CENTRAL LTD. - 1868-7083 .- 1868-7075. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Few biological markers are associated with survival after relapse of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In pediatric T-cell ALL, we have identified promoter-associated methylation alterations that correlate with prognosis. Here, the prognostic relevance of CpG island methylation phenotype (CIMP) classification was investigated in pediatric BCP-ALL patients.Methods: Six hundred and one BCP-ALL samples from Nordic pediatric patients (age 1-18) were CIMP classified at initial diagnosis and analyzed in relation to clinical data.Results: Among the 137 patients that later relapsed, patients with a CIMP-profile (n = 42) at initial diagnosis had an inferior overall survival (pOS(5years) 33%) compared to CIMP+ patients (n = 95, pOS(5years) 65%) (p = 0.001), which remained significant in a Cox proportional hazards model including previously defined risk factors.Conclusion: CIMP classification is a strong candidate for improved risk stratification of relapsed BCP-ALL.
  •  
12.
  • Bovinder Ylitalo, Erik, et al. (author)
  • A novel DNA methylation signature is associated with androgen receptor activity and patient prognosis in bone metastatic prostate cancer
  • 2021
  • In: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Patients with metastatic prostate cancer (PC) are treated with androgen deprivation therapy (ADT) that initially reduces metastasis growth, but after some time lethal castration-resistant PC (CRPC) develops. A better understanding of the tumor biology in bone metastases is needed to guide further treatment developments. Subgroups of PC bone metastases based on transcriptome profiling have been previously identified by our research team, and specifically, heterogeneities related to androgen receptor (AR) activity have been described. Epigenetic alterations during PC progression remain elusive and this study aims to explore promoter gene methylation signatures in relation to gene expression and tumor AR activity.Materials and methods: Genome-wide promoter-associated CpG methylation signatures of a total of 94 tumor samples, including paired non-malignant and malignant primary tumor areas originating from radical prostatectomy samples (n = 12), and bone metastasis samples of separate patients with hormone-naive (n = 14), short-term castrated (n = 4) or CRPC (n = 52) disease were analyzed using the Infinium Methylation EPIC arrays, along with gene expression analysis by Illumina Bead Chip arrays (n = 90). AR activity was defined from expression levels of genes associated with canonical AR activity.Results: Integrated epigenome and transcriptome analysis identified pronounced hypermethylation in malignant compared to non-malignant areas of localized prostate tumors. Metastases showed an overall hypomethylation in relation to primary PC, including CpGs in the AR promoter accompanied with induction of AR mRNA levels. We identified a Methylation Classifier for Androgen receptor activity (MCA) signature, which separated metastases into two clusters (MCA positive/negative) related to tumor characteristics and patient prognosis. The MCA positive metastases showed low methylation levels of genes associated with canonical AR signaling and patients had a more favorable prognosis after ADT. In contrast, MCA negative patients had low AR activity associated with hypermethylation of AR-associated genes, and a worse prognosis after ADT.Conclusions: A promoter methylation signature classifies PC bone metastases into two groups and predicts tumor AR activity and patient prognosis after ADT. The explanation for the methylation diversities observed during PC progression and their biological and clinical relevance need further exploration.
  •  
13.
  •  
14.
  • Ciuculete, Diana-Maria, et al. (author)
  • meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 and SHANK2 genes
  • 2020
  • In: Clinical Epigenetics. - : BMC. - 1868-7083 .- 1868-7075. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background Little is known about how genetics and epigenetics interplay in depression. Evidence suggests that genetic variants may change vulnerability to depression by modulating DNA methylation (DNAm) and non-coding RNA (ncRNA) levels. Therefore, the aim of the study was to investigate the effect of the genetic variation, previously identified in the largest genome-wide association study for depression, on proximal DNAm and ncRNA levels. Results We performed DNAm quantitative trait locus (meQTL) analysis in two independent cohorts (totaln= 435 healthy individuals), testing associations between 102 single-nucleotide polymorphisms (SNPs) and DNAm levels in whole blood. We identified and replicated 64 SNP-CpG pairs (p(adj.)< 0.05) with meQTL effect. Lower DNAm at cg02098413 located in theHACE1promoter conferred by the risk allele (C allele) at rs1933802 was associated with higher risk for depression (p(raw)= 0.014, DNAm = 2.3%). In 1202 CD14+ cells sorted from blood, DNAm at cg02088412 positively correlated withHACE1mRNA expression. Investigation in postmortem brain tissue of adults diagnosed with major depressive disorder (MDD) indicated 1% higher DNAm at cg02098413 in neurons and lowerHACE1mRNA expression in CA1 hippocampus of MDD patients compared with healthy controls (p= 0.008 and 0.012, respectively). Expression QTL analysis in blood of 74 adolescent revealed that hsa-miR-3664-5p was associated with rs7117514 (SHANK2) (p(adj.)= 0.015, mRNA difference = 5.2%). Gene ontology analysis of the miRNA target genes highlighted implication in neuronal processes. Conclusions Collectively, our findings from a multi-tissue (blood and brain) and multi-layered (genetic, epigenetic, transcriptomic) approach suggest that genetic factors may influence depression by modulating DNAm and miRNA levels. Alterations atHACE1andSHANK2loci imply potential mechanisms, such as oxidative stress in the brain, underlying depression. Our results deepened the knowledge of molecular mechanisms in depression and suggest new epigenetic targets that should be further evaluated.
  •  
15.
  • Danielsson, Anna, 1973, et al. (author)
  • Accumulation of DNA methylation alterations in paediatric glioma stem cells following fractionated dose irradiation
  • 2020
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. Methods We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. Results Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. Conclusions DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.
  •  
16.
  • Danielsson, Anna, 1973, et al. (author)
  • MethPed: a DNA methylation classifier tool for the identification of pediatric brain tumor subtypes
  • 2015
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 7
  • Journal article (peer-reviewed)abstract
    • Background: Classification of pediatric tumors into biologically defined subtypes is challenging, and multifaceted approaches are needed. For this aim, we developed a diagnostic classifier based on DNA methylation profiles. Results: Methylation data generated by the Illumina Infinium HumanMethylation 450 BeadChip arrays were downloaded from the Gene Expression Omnibus (n = 472). Using the data, we built MethPed, which is a multiclass random forest algorithm, based on DNA methylation profiles from nine subgroups of pediatric brain tumors. DNA from 18 regional samples was used to validate MethPed. MethPed was additionally applied to a set of 28 publically available tumors with the heterogeneous diagnosis PNET. MethPed could successfully separate individual histology tumor types at a very high accuracy (kappa = 0.98). Analysis of a regional cohort demonstrated the clinical benefit of MethPed, as confirmation of diagnosis of tumors with clear histology but also identified possible differential diagnoses in tumors with complicated and mixed type morphology. Conclusions: We demonstrate the utility of methylation profiling of pediatric brain tumors and offer MethPed as an easy-to-use toolbox that allows researchers and clinical diagnosticians to test single samples as well as large cohorts for subclass prediction of pediatric brain tumors. This will immediately aid clinical practice and importantly increase our molecular knowledge of these tumors for further therapeutic development.
  •  
17.
  • Elbere, Ilze, et al. (author)
  • Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals
  • 2018
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Metformin is a widely prescribed antihyperglycemic agent that has been also associated with multiple therapeutic effects in various diseases, including several types of malignancies. There is growing evidence regarding the contribution of the epigenetic mechanisms in reaching metformin's therapeutic goals; however, the effect of metformin on human cells in vivo is not comprehensively studied. The aim of our study was to examine metformin-induced alterations of DNA methylation profiles in white blood cells of healthy volunteers, employing a longitudinal study design.Results: Twelve healthy metformin-naive individuals where enrolled in the study. Genome-wide DNA methylation pattern was estimated at baseline, 10h and 7days after the start of metformin administration. The whole-genome DNA methylation analysis in total revealed 125 differentially methylated CpGs, of which 11 CpGs and their associated genes with the most consistent changes in the DNA methylation profile were selected: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4, LOC727982, SIX3, ADAM8, SNORD12B, VPS8, and several differentially methylated regions as novel potential epigenetic targets of metformin. The main functions of the majority of top-ranked differentially methylated loci and their representative cell signaling pathways were linked to the well-known metformin therapy targets: regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegenerative diseases.Conclusions: Here we demonstrate for the first time the immediate effect of short-term metformin administration at therapeutic doses on epigenetic regulation in human white blood cells. These findings suggest the DNA methylation process as one of the mechanisms involved in the action of metformin, thereby revealing novel targets and directions of the molecular mechanisms underlying the various beneficial effects of metformin.Trial registrationEU Clinical Trials Register, 2016-001092-74. Registered 23 March 2017, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001092-74/LV.
  •  
18.
  • Fernandez-Sanles, Alba, et al. (author)
  • DNA methylation biomarkers of myocardial infarction and cardiovascular disease
  • 2021
  • In: Clinical Epigenetics. - : BioMed Central (BMC). - 1868-7083 .- 1868-7075. ; 13
  • Journal article (peer-reviewed)abstract
    • Background: The epigenetic landscape underlying cardiovascular disease (CVD) is not completely understood and the clinical value of the identified biomarkers is still limited. We aimed to identify differentially methylated loci associated with acute myocardial infarction (AMI) and assess their validity as predictive and causal biomarkers.Results: We designed a case-control, two-stage, epigenome-wide association study on AMI (n(discovery) = 391, n(validation) = 204). DNA methylation was assessed using the Infinium MethylationEPIC BeadChip. We performed a fixed-effects meta-analysis of the two samples. 34 CpGs were associated with AMI. Only 12 of them were available in two independent cohort studies (n similar to 1800 and n similar to 2500) with incident coronary and cardiovascular disease (CHD and CVD, respectively). The Infinium HumanMethylation450 BeadChip was used in those two studies. Four of the 12 CpGs were validated in association with incident CHD: AHRR-mapping cg05575921, PTCD2-mapping cg25769469, intergenic cg21566642 and MPO-mapping cg04988978. We then assessed whether methylation risk scores based on those CpGs improved the predictive capacity of the Framingham risk function, but they did not. Finally, we aimed to study the causality of those associations using a Mendelian randomization approach but only one of the CpGs had a genetic influence and therefore the results were not conclusive.Conclusions: We have identified 34 CpGs related to AMI. These loci highlight the relevance of smoking, lipid metabolism, and inflammation in the biological mechanisms related to AMI. Four were additionally associated with incident CHD and CVD but did not provide additional predictive information.
  •  
19.
  • Ferreyra Vega, Sandra, et al. (author)
  • DNA methylation profiling for molecular classification of adult diffuse lower-grade gliomas.
  • 2021
  • In: Clinical Epigenetics. - : Springer Nature. - 1868-7083 .- 1868-7075. ; 13
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: DNA methylation profiling has facilitated and improved the classification of a wide variety of tumors of the central nervous system. In this study, we investigated the potential utility of DNA methylation profiling to achieve molecular diagnosis in adult primary diffuse lower-grade glioma (dLGG) according to WHO 2016 classification system. We also evaluated whether methylation profiling could provide improved molecular characterization and identify prognostic differences beyond the classical histological WHO grade together with IDH mutation status and 1p/19q codeletion status. All patients diagnosed with dLGG in the period 2007-2016 from the Västra Götaland region in Sweden were assessed for inclusion in the study.RESULTS: A total of 166 dLGG cases were subjected for genome-wide DNA methylation analysis. Of these, 126 (76%) were assigned a defined diagnostic methylation class with a class prediction score ≥ 0.84 and subclass score ≥ 0.50. The assigned methylation classes were highly associated with their IDH mutation status and 1p/19q codeletion status. IDH-wildtype gliomas were further divided into subgroups with distinct molecular features.CONCLUSION: The stratification of the patients by methylation profiling was as effective as the integrated WHO 2016 molecular reclassification at predicting the clinical outcome of the patients. Our study shows that DNA methylation profiling is a reliable and robust approach for the classification of dLGG into molecular defined subgroups, providing accurate detection of molecular markers according to WHO 2016 classification.
  •  
20.
  • García-Calzón, Sonia, et al. (author)
  • Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver
  • 2017
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1, s. 1-9
  • Journal article (peer-reviewed)abstract
    • Background: Given that metformin is the most common pharmacological therapy for type 2 diabetes, understanding the function of this drug is of great importance. Hepatic metformin transporters are responsible for the pharmacologic action of metformin. However, epigenetics in genes encoding metformin transporters has not been fully elucidated. We examined the DNA methylation of these genes in the liver of subjects with type 2 diabetes and tested whether epigenetic alterations associate with diabetes medication, i.e., metformin or insulin plus metformin treatment. Results: DNA methylation in OCT1 encoded by SLC22A1, OCT3 encoded by SLC22A3, and MATE1 encoded by SLC47A1 was assessed in the human liver. Lower average and promoter DNA methylation of SLC22A1, SLC22A3, and SLC47A1 was found in diabetic subjects receiving just metformin, compared to those who took insulin plus metformin or no diabetes medication. Moreover, diabetic subjects receiving just metformin had a similar DNA methylation pattern in these genes compared to non-diabetic subjects. Notably, DNA methylation was also associated with gene expression, glucose levels, and body mass index, i.e., higher SLC22A3 methylation was related to lower SLC22A3 expression and to insulin plus metformin treatment, higher fasting glucose levels and higher body mass index. Importantly, metformin treatment did also directly decrease DNA methylation of SLC22A1 in hepatocytes cultured in vitro. Conclusions: Our study supports that metformin decreases DNA methylation of metformin transporter genes in the human liver. Moreover, higher methylation levels in these genes associate with hyperglycaemia and obesity.
  •  
21.
  •  
22.
  • Guerrero-Bosagna, Carlos, 1975-, et al. (author)
  • Globalization, climate change, and transgenerational epigenetic inheritance: will our descendants be at risk?
  • 2015
  • In: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 7:8
  • Journal article (peer-reviewed)abstract
    • Transgenerational epigenetic inheritance has gained increased attention due to the possibility that exposure to environmental contaminants induce diseases that propagate  across generations through epigenomic alterations in gametes. In laboratory animals,exposure to environmental toxicants such as fungicides, pesticides, or plastic compounds has been shown to produce abnormal reproductive or metabolic phenotypes that are transgenerationally transmitted. Human exposures to environmental toxicants have increased due to industrialization and globalization, as well as the incidence of diseases shown to be transgenerationally transmitted in animal models. This new knowledge poses an urgent call to study transgenerational  consequences of current human exposures to environmental toxicants.
  •  
23.
  • Hjort, Line, et al. (author)
  • 36 h fasting of young men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent manner
  • 2017
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Background: Subjects born with low birth weight (LBW) display a more energy-conserving response to fasting compared with normal birth weight (NBW) subjects. However, the molecular mechanisms explaining these metabolic differences remain unknown. Environmental influences may dynamically affect epigenetic marks, also in postnatal life. Here, we aimed to study the effects of short-term fasting on leptin (LEP) and adiponectin (ADIPOQ) DNA methylation and gene expression in subcutaneous adipose tissue (SAT) from subjects with LBW and NBW. Methods: Twenty-one young LBW men and 18 matched NBW controls were studied during 36 h fasting. Eight subjects from each group completed a control study (overnight fast). We analyzed SAT LEP and ADIPOQ methylation (Epityper MassARRAY), gene expression (q-PCR), and adipokine plasma levels. Results: After overnight fast (control study), LEP and ADIPOQ DNA methylation levels were higher in LBW compared to those in NBW subjects (p ≤ 0.03) and increased with 36 h fasting in NBW subjects only (p ≤ 0.06). Both LEP and ADIPOQ methylation levels were positively associated with total body fat percentage (p ≤ 0.05). Plasma leptin levels were higher in LBW versus NBW subjects after overnight fasting (p = 0.04) and decreased more than threefold in both groups after 36 h fasting (p ≤ 0.0001). Conclusions: This is the first study to demonstrate that fasting induces changes in DNA methylation. This was shown in LEP and ADIPOQ promoters in SAT among NBW but not LBW subjects. The altered epigenetic flexibility in LBW subjects might contribute to their differential response to fasting, adipokine levels, and increased risk of metabolic disease.
  •  
24.
  • Huoman, Johanna, et al. (author)
  • Combined prenatal Lactobacillus reuteri and omega-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells
  • 2021
  • In: Clinical Epigenetics. - : BMC. - 1868-7083 .- 1868-7075. ; 13:1
  • Journal article (peer-reviewed)abstract
    • BackgroundEnvironmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or omega -3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and omega -3 fatty acid treatment. To this end,>866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n=18, single treatments: probiotics n=16, omega -3 n=15, and double placebo: n=14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set.ResultsComparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development.ConclusionPrenatal L. reuteri and/or omega -3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and omega -3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies.Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970.
  •  
25.
  • Karlsson, Ida K., et al. (author)
  • Epigenome-wide association study of level and change in cognitive abilities from midlife through late life
  • 2021
  • In: Clinical Epigenetics. - : Springer Nature. - 1868-7083 .- 1868-7075. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Epigenetic mechanisms are important in aging and may be involved in late-life changes in cognitive abilities. We conducted an epigenome-wide association study of leukocyte DNA methylation in relation to level and change in cognitive abilities, from midlife through late life in 535 Swedish twins. Results: Methylation levels were measured with the Infinium Human Methylation 450 K or Infinium MethylationEPIC array, and all sites passing quality control on both arrays were selected for analysis (n = 250,816). Empirical Bayes estimates of individual intercept (age 65), linear, and quadratic change were obtained from latent growth curve models of cognitive traits and used as outcomes in linear regression models. Significant sites (p < 2.4 × 10–7) were followed up in between-within twin pair models adjusting for familial confounding and full-growth modeling. We identified six significant associations between DNA methylation and level of cognitive abilities at age 65: cg18064256 (PPP1R13L) with processing speed and spatial ability; cg04549090 (NRXN3) with spatial ability; cg09988380 (POGZ), cg25651129 (-), and cg08011941 (ENTPD8) with working memory. The genes are involved in neuroinflammation, neuropsychiatric disorders, and ATP metabolism. Within-pair associations were approximately half that of between-pair associations across all sites. In full-growth curve models, associations between DNA methylation and cognitive level at age 65 were of small effect sizes, and associations between DNA methylation and longitudinal change in cognitive abilities of very small effect sizes. Conclusions: Leukocyte DNA methylation was associated with level, but not change in cognitive abilities. The associations were substantially attenuated in within-pair analyses, indicating they are influenced in part by genetic factors. 
  •  
26.
  • Kitaba, N. T., et al. (author)
  • Fathers' preconception smoking and offspring DNA methylation
  • 2023
  • In: Clinical Epigenetics. - : BioMed Central (BMC). - 1868-7075 .- 1868-7083. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Background Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking.Methods We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure.Results Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure.Conclusion Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.
  •  
27.
  • Kling, Teresia, 1985, et al. (author)
  • Validation of the MethylationEPIC BeadChip for fresh-frozen and formalin-fixed paraffin-embedded tumours.
  • 2017
  • In: Clinical epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 9
  • Journal article (peer-reviewed)abstract
    • DNA methylation is the most studied epigenetic modification due to its role in regulating gene expression, and its involvement in the pathogenesis of cancer and several diseases upon aberrations in methylation. The method of choice to evaluate genome-wide methylation has been the Illumina HumanMethylation450 BeadChip (450K), but it was recently replaced with the MethylationEPIC BeadChip (EPIC). We therefore sought to validate the EPIC array in comparison to the 450K array for both fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tumours. We also performed analysis on the EPIC array with paired FF and FFPE samples to adapt to a clinical setting where FFPE is routinely used. Further, we compared two restoration methods, REPLI-g and Infinium, for FFPE-derived DNA on the EPIC array. The Pearson correlation of β values for common probes on the 450K and EPIC array was high for both FF (mean: 0.992) and FFPE (mean: 0.984) samples. The β values generated from the EPIC array for FFPE samples correlated well with the paired FF tumours, but varied between 0.901 and 0.987. We did note that sample pairs with lower correlation had less bimodal density distributions of β values and displayed higher noise in the copy number alteration plots (generated from the methylation array data) in the FFPE sample. Both REPLI-g and the Infinium restoration for FFPE samples performed well on the EPIC array and generated equivalent correlation scores to the paired FF sample.
  •  
28.
  • Konki, Mikko, et al. (author)
  • Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer's disease.
  • 2019
  • In: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 11:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Alzheimer's disease results from a neurodegenerative process that starts well before the diagnosis can be made. New prognostic or diagnostic markers enabling early intervention into the disease process would be highly valuable. Environmental and lifestyle factors largely modulate the disease risk and may influence the pathogenesis through epigenetic mechanisms, such as DNA methylation. As environmental and lifestyle factors may affect multiple tissues of the body, we hypothesized that the disease-associated DNA methylation signatures are detectable in the peripheral blood of discordant twin pairs.RESULTS: Comparison of 23 disease discordant Finnish twin pairs with reduced representation bisulfite sequencing revealed peripheral blood DNA methylation differences in 11 genomic regions with at least 15.0% median methylation difference and FDR adjusted p value ≤ 0.05. Several of the affected genes are primarily associated with neuronal functions and pathologies and do not display disease-associated differences in gene expression in blood. The DNA methylation mark in ADARB2 gene was found to be differentially methylated also in the anterior hippocampus, including entorhinal cortex, of non-twin cases and controls. Targeted bisulfite pyrosequencing of the DNA methylation mark in ADARB2 gene in 62 Finnish and Swedish twin pairs revealed that, in addition to the disease status, DNA methylation of this region is influenced by gender, age, zygosity, APOE genotype, and smoking. Further analysis of 120 Swedish twin pairs indicated that this specific DNA methylation mark is not predictive for Alzheimer's disease and becomes differentially methylated after disease onset.CONCLUSIONS: DNA methylation differences can be detected in the peripheral blood of twin pairs discordant for Alzheimer's disease. These DNA methylation signatures may have value as disease markers and provide insights into the molecular mechanisms of pathogenesis. We found no evidence that the DNA methylation marks would be associated with gene expression in blood. Further studies are needed to elucidate the potential importance of the associated genes in neuronal functions and to validate the prognostic or diagnostic value of the individual marks or marker panels.
  •  
29.
  •  
30.
  • Kunovac Kallak, Theodora, 1985-, et al. (author)
  • DNA methylation in cord blood in association with prenatal depressive symptoms
  • 2021
  • In: Clinical Epigenetics. - : BioMed Central (BMC). - 1868-7083 .- 1868-7075. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Prenatal symptoms of depression (PND) and anxiety affect up to every third pregnancy. Children of mothers with mental health problems are at higher risk of developmental problems, possibly through epigenetic mechanisms together with other factors such as genetic and environmental. We investigated DNA methylation in cord blood in relation to PND, taking into consideration a history of depression, co-morbidity with anxiety and selective serotonin reuptake inhibitors (SSRI) use, and stratified by sex of the child. Mothers (N = 373) prospectively filled out web-based questionnaires regarding mood symptoms and SSRI use throughout pregnancy. Cord blood was collected at birth and DNA methylation was measured using Illumina MethylationEPIC array at 850 000 CpG sites throughout the genome. Differentially methylated regions were identified using Kruskal-Wallis test, and Benjamini-Hochberg adjusted p-values < 0.05 were considered significant.Results: No differential DNA methylation was associated with PND alone; however, differential DNA methylation was observed in children exposed to comorbid PND with anxiety symptoms compared with healthy controls in ABCF1 (log twofold change - 0.2), but not after stratification by sex of the child. DNA methylation in children exposed to PND without SSRI treatment and healthy controls both differed in comparison with SSRI exposed children at several sites and regions, among which hypomethylation was observed in CpGs in the promoter region of CRBN (log2 fold change - 0.57), involved in brain development, and hypermethylation in MDFIC (log2 fold change 0.45), associated with the glucocorticoid stress response.Conclusion: Although it is not possible to assess if these methylation differences are due to SSRI treatment itself or to more severe depression, our findings add on to existing knowledge that there might be different biological consequences for the child depending on whether maternal PND was treated with SSRIs or not.
  •  
31.
  • Laan, Loora, et al. (author)
  • DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors
  • 2020
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 12
  • Journal article (peer-reviewed)abstract
    • Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages.Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling.Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
  •  
32.
  • Larsson, Chatarina, 1979-, et al. (author)
  • Restoration of KMT2C/MLL3 in human colorectal cancer cells reinforces genome-wide H3K4me1 profiles and influences cell growth and gene expression
  • 2020
  • In: Clinical Epigenetics. - : Springer Nature. - 1868-7083 .- 1868-7075. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background The histone 3 lysine 4 (H3K4) monomethylase KMT2C is mutated across several cancer types; however, the effects of mutations on epigenome organization, gene expression, and cell growth are not clear. A frequently recurring mutation in colorectal cancer (CRC) with microsatellite instability is a single nucleotide deletion within the exon 38 poly-A(9) repeat (c.8390delA) which results in frameshift preceding the functional carboxy-terminal SET domain. To study effects ofKMT2Cexpression in CRC cells, we restored one allele to wild typeKMT2Cin the two CRC cell lines RKO and HCT116, which both are homozygous c.8390delA mutant. Results Gene editing resulted in increasedKMT2Cexpression, increased H3K4me1 levels, altered gene expression profiles, and subtle negative effects on cell growth, where higher dependence and stronger effects ofKMT2Cexpression were observed in RKO compared to HCT116 cells. Surprisingly, we found that the two RKO and HCT116 CRC cell lines have distinct baseline H3K4me1 epigenomic profiles. In RKO cells, a flatter genome-wide H3K4me1 profile was associated with more increased H3K4me1 deposition at enhancers, reduced cell growth, and more differential gene expression relative to HCT116 cells when KMT2C was restored. Profiling of H3K4me1 did not indicate a highly specific regulation of gene expression as KMT2C-induced H3K4me1 deposition was found globally and not at a specific enhancer sub-set in the engineered cells. Although we observed variation in differentially regulated gene sets between cell lines and individual clones, differentially expressed genes in both cell lines included genes linked to known cancer signaling pathways, estrogen response, hypoxia response, and aspects of immune system regulation. Conclusions Here, KMT2C restoration reduced CRC cell growth and reinforced genome-wide H3K4me1 deposition at enhancers; however, the effects varied depending upon the H3K4me1 status of KMT2C deficient cells. Results indicate that KMT2C inactivation may promote colorectal cancer development through transcriptional dysregulation in several pathways with known cancer relevance.
  •  
33.
  • Longo, Michele, et al. (author)
  • Altered H3K4me3 profile at the TFAM promoter causes mitochondrial alterations in preadipocytes from first-degree relatives of type 2 diabetics
  • 2023
  • In: CLINICAL EPIGENETICS. - 1868-7075 .- 1868-7083. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Background First-degree relatives of type 2 diabetics (FDR) exhibit a high risk of developing type 2 diabetes (T2D) and feature subcutaneous adipocyte hypertrophy, independent of obesity. In FDR, adipose cell abnormalities contribute to early insulin-resistance and are determined by adipocyte precursor cells (APCs) early senescence and impaired recruitment into the adipogenic pathway. Epigenetic mechanisms signal adipocyte differentiation, leading us to hypothesize that abnormal epigenetic modifications cause adipocyte dysfunction and enhance T2D risk. To test this hypothesis, we examined the genome-wide histone profile in APCs from the subcutaneous adipose tissue of healthy FDR.Results Sequencing-data analysis revealed 2644 regions differentially enriched in lysine 4 tri-methylated H3-histone (H3K4me3) in FDR compared to controls (CTRL) with significant enrichment in mitochondrial-related genes. These included TFAM, which regulates mitochondrial DNA (mtDNA) content and stability. In FDR APCs, a significant reduction in H3K4me3 abundance at the TFAM promoter was accompanied by a reduction in TFAM mRNA and protein levels. FDR APCs also exhibited reduced mtDNA content and mitochondrial-genome transcription. In parallel, FDR APCs exhibited impaired differentiation and TFAM induction during adipogenesis. In CTRL APCs, TFAM-siRNA reduced mtDNA content, mitochondrial transcription and adipocyte differentiation in parallel with upregulation of the CDKN1A and ZMAT3 senescence genes. Furthermore, TFAM-siRNA significantly expanded hydrogen peroxide (H2O2)-induced senescence, while H2O2 did not affect TFAM expression.Conclusions Histone modifications regulate APCs ability to differentiate in mature cells, at least in part by modulating TFAM expression and affecting mitochondrial function. Reduced H3K4me3 enrichment at the TFAM promoter renders human APCs senescent and dysfunctional, increasing T2D risk.
  •  
34.
  • Main, Ailsa Maria, et al. (author)
  • DNA methylation and gene expression of HIF3A : cross-tissue validation and associations with BMI and insulin resistance
  • 2016
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Background: Associations between BMI and DNA methylation of hypoxia-inducible factor 3-alpha (HIF3A) in both blood cells and subcutaneous adipose tissue (SAT) have been reported. In this study, we investigated associations between BMI and HIF3A DNA methylation in the blood and SAT from the same individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. Methods: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral glucose tolerance tests. Results: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression. Interestingly, HIF3A expression in SAT, but not in muscle, associated negatively with BMI and whole-body insulin resistance. We found a significant effect of familiality on HIF3A methylation levels in the blood and HIF3A expression levels in skeletal muscle. Conclusions: Our findings are in line with the previously reported link between BMI and DNA methylation of HIF3A in the blood. The tissue-specific results of HIF3A gene expression indicate that SAT is the more functional tissue in which a low expression may adversely affect whole-body insulin sensitivity.
  •  
35.
  •  
36.
  •  
37.
  • Nikesjö, Frida, et al. (author)
  • Defining post-acute COVID-19 syndrome (PACS) by an epigenetic biosignature in peripheral blood mononuclear cells
  • 2022
  • In: Clinical Epigenetics. - : BioMed Central Ltd.. - 1868-7083 .- 1868-7075. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Post-acute COVID-19 syndrome (PACS) has been defined as symptoms persisting after clearance of a COVID-19 infection. We have previously demonstrated that alterations in DNA methylation (DNAm) status persist in individuals who recovered from a COVID-19 infection, but it is currently unknown if PACS is associated with epigenetic changes. We compared DNAm patterns in patients with PACS with those in controls and in healthy COVID-19 convalescents and found a unique DNAm signature in PACS patients. This signature unravelled modified pathways that regulate angiotensin II and muscarinic receptor signalling and protein–protein interaction networks that have bearings on vesicle formation and mitochondrial function.
  •  
38.
  • Nilsson, Emma, et al. (author)
  • DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes
  • 2017
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Research review (peer-reviewed)abstract
    • Type 2 diabetes is a complex trait with both environmental and hereditary factors contributing to the overall pathogenesis. One link between genes, environment, and disease is epigenetics influencing gene transcription and, consequently, organ function. Genome-wide studies have shown altered DNA methylation in tissues important for glucose homeostasis including pancreas, liver, skeletal muscle, and adipose tissue from subjects with type 2 diabetes compared with nondiabetic controls. Factors predisposing for type 2 diabetes including an adverse intrauterine environment, increasing age, overweight, physical inactivity, a family history of the disease, and an unhealthy diet have all shown to affect the DNA methylation pattern in target tissues for insulin resistance in humans. Epigenetics including DNA methylation may therefore improve our understanding of the type 2 diabetes pathogenesis, contribute to development of novel treatments, and be a useful tool to identify individuals at risk for developing the disease.
  •  
39.
  • Nordlund, Jessica, et al. (author)
  • DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
  • 2015
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 7
  • Journal article (peer-reviewed)abstract
    • Background: We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. Results: We used the methylation status of similar to 450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. Conclusions: Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.
  •  
40.
  • Nätt, Daniel, et al. (author)
  • High cortisol in 5-year-old children causes loss of DNA methylation in SINE retrotransposons: a possible role for ZNF263 in stress-related diseases
  • 2015
  • In: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Background: Childhood stress leads to increased risk of many adult diseases, such as major depression and cardiovascular disease. Studies show that adults with experienced childhood stress have specific epigenetic changes, but to understand the pathways that lead to disease, we also need to study the epigenetic link prospectively in children. Results: Here, we studied a homogenous group of 48 5-year-old children. By combining hair cortisol measurements (a well-documented biomarker for chronic stress), with whole-genome DNA-methylation sequencing, we show that high cortisol associates with a genome-wide decrease in DNA methylation and targets short interspersed nuclear elements (SINEs; a type of retrotransposon) and genes important for calcium transport: phenomena commonly affected in stress-related diseases and in biological aging. More importantly, we identify a zinc-finger transcription factor, ZNF263, whose binding sites where highly overrepresented in regions experiencing methylation loss. This type of zinc-finger protein has previously shown to be involved in the defense against retrotransposons. Conclusions: Our results show that stress in preschool children leads to changes in DNA methylation similar to those seen in biological aging. We suggest that this may affect future disease susceptibility by alterations in the epigenetic mechanisms that keep retrotransposons dormant. Future treatments for stress-and age-related diseases may therefore seek to target zinc-finger proteins that epigenetically control retrotransposon reactivation, such as ZNF263.
  •  
41.
  • Ondicova, Miroslava, et al. (author)
  • Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms
  • 2022
  • In: Clinical Epigenetics. - : BioMed Central (BMC). - 1868-7083 .- 1868-7075. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Background: We previously showed that continued folic acid (FA) supplementation beyond the first trimester of pregnancy appears to have beneficial effects on neurocognitive performance in children followed for up to 11 years, but the biological mechanism for this effect has remained unclear. Using samples from our randomized controlled trial of folic acid supplementation in second and third trimester (FASSTT), where significant improvements in cognitive and psychosocial performance were demonstrated in children from mothers supplemented in pregnancy with 400 mu g/day FA compared with placebo, we examined methylation patterns from cord blood (CB) using the EPIC array which covers approximately 850,000 cytosine-guanine (CG) sites across the genome. Genes showing significant differences were verified using pyrosequencing and mechanistic approaches used in vitro to determine effects on transcription. Results: FA supplementation resulted in significant differences in methylation, particularly at brain-related genes. Further analysis showed these genes split into two groups. In one group, which included the CES1 gene, methylation changes at the promoters were important for regulating transcription. We also identified a second group which had a characteristic bimodal profile, with low promoter and high gene body (GB) methylation. In the latter, loss of methylation in the GB is linked to decreases in transcription: this group included the PRKAR1B/HEATR2 genes and the dopamine receptor regulator PDE4C. Overall, methylation in CB also showed good correlation with methylation profiles seen in a published data set of late gestation foetal brain samples. Conclusion: We show here clear alterations in DNA methylation at specific classes of neurodevelopmental genes in the same cohort of children, born to FA-supplemented mothers, who previously showed improved cognitive and psychosocial performance. Our results show measurable differences at neural genes which are important for transcriptional regulation and add to the supporting evidence for continued FA supplementation throughout later gestation.
  •  
42.
  • Panchenko, Polina E., et al. (author)
  • Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice
  • 2016
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 8
  • Journal article (peer-reviewed)abstract
    • BACKGROUND:Maternal obesity impacts fetal growth and pregnancy outcomes. To counteract the deleterious effects of obesity on fertility and pregnancy issue, preconceptional weight loss is recommended to obese women. Whether this weight loss is beneficial/detrimental for offspring remains poorly explored. Epigenetic mechanisms could be affected by maternal weight changes, perturbing expression of key developmental genes in the placenta or fetus. Our aim was to investigate the effects of chronic maternal obesity on feto-placental growth along with the underlying epigenetic mechanisms. We also tested whether preconceptional weight loss could alleviate these effects.RESULTS:Female mice were fed either a control diet (CTRL group), a high-fat diet (obese (OB) group), or a high-fat diet switched to a control diet 2 months before conception (weight loss (WL) group). At mating, OB females presented an obese phenotype while WL females normalized metabolic parameters. At embryonic day 18.5 (E18.5), fetuses from OB females presented fetal growth restriction (FGR; -13 %) and 28 % of the fetuses were small for gestational age (SGA). Fetuses from WL females normalized this phenotype. The expression of 60 epigenetic machinery genes and 32 metabolic genes was measured in the fetal liver, placental labyrinth, and junctional zone. We revealed 23 genes altered by maternal weight trajectories in at least one of three tissues. The fetal liver and placental labyrinth were more responsive to maternal obesity than junctional zone. One third (18/60) of the epigenetic machinery genes were differentially expressed between at least two maternal groups. Interestingly, genes involved in the histone acetylation pathway were particularly altered (13/18). In OB group, lysine acetyltransferases and Bromodomain-containing protein 2 were upregulated, while most histone deacetylases were downregulated. In WL group, the expression of only a subset of these genes was normalized.CONCLUSIONS:This study highlights the high sensitivity of the epigenetic machinery gene expression, and particularly the histone acetylation pathway, to maternal obesity. These obesity-induced transcriptional changes could alter the placental and the hepatic epigenome, leading to FGR. Preconceptional weight loss appears beneficial to fetal growth, but some effects of previous obesity were retained in offspring phenotype.
  •  
43.
  • Pehrson, Isabelle, et al. (author)
  • The spectrum of tuberculosis described as differential DNA methylation patterns in alveolar macrophages and alveolar T cells
  • 2022
  • In: Clinical Epigenetics. - : BMC. - 1868-7083 .- 1868-7075. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Background: Host innate immune cells have been identified as key players in the early eradication of Mycobacterium tuberculosis and in the maintenance of an anti-mycobacterial immune memory, which we and others have shown are induced through epigenetic reprogramming. Studies on human tuberculosis immunity are dominated by those using peripheral blood as surrogate markers for immunity. We aimed to investigate DNA methylation patterns in immune cells of the lung compartment by obtaining induced sputum from M. tuberculosis- exposed subjects including symptom-free subjects testing positively and negatively for latent tuberculosis as well as patients diagnosed with active tuberculosis. Alveolar macrophages and alveolar T cells were isolated from the collected sputum and DNA methylome analyses performed (Illumina Infinium Human Methylation 450 k).Results: Multidimensional scaling analysis revealed that DNA methylomes of cells from the tuberculosis-exposed subjects and controls appeared as separate clusters. The numerous genes that were differentially methylated between the groups were functionally connected and overlapped with previous findings of trained immunity and tuberculosis. In addition, analysis of the interferon-gamma release assay (IGRA) status of the subjects demonstrated that the IGRA status was reflected in the DNA methylome by a unique signature.Conclusions: This pilot study suggests that M. tuberculosis induces epigenetic reprogramming in immune cells of the lung compartment, reflected as a specific DNA methylation pattern. The DNA methylation signature emerging from the comparison of IGRA-negative and IGRA-positive subjects revealed a spectrum of signature strength with the TB patients grouping together at one end of the spectrum, both in alveolar macrophages and T cells. DNA methylation-based biosignatures could be considered for further development towards a clinically useful tool for determining tuberculosis infection status and the level of tuberculosis exposure.
  •  
44.
  •  
45.
  • Perrier, Flavie, et al. (author)
  • Identifying and correcting epigenetics measurements for systematic sources of variation
  • 2018
  • In: Clinical Epigenetics. - London : BioMed Central. - 1868-7083 .- 1868-7075. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis.Results:  A sizeable proportion of systematic variability due to variables expressing 'batch' and 'sample position' within 'chip' was identified, with values of the partial R-2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals' methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to 'batch' (1.3%) and 'sample position' (0.6%), and in a diminished variability attributable to 'chip' within a batch (0.9%). After ComBat or the residuals' corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96).Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation.
  •  
46.
  • Qin, Xueying, et al. (author)
  • The epigenetic etiology of cardiovascular disease in a longitudinal Swedish twin study
  • 2021
  • In: Clinical Epigenetics. - : BioMed Central. - 1868-7083 .- 1868-7075. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Studies on DNA methylation have the potential to discover mechanisms of cardiovascular disease (CVD) risk. However, the role of DNA methylation in CVD etiology remains unclear.Results: We performed an epigenome-wide association study (EWAS) on CVD in a longitudinal sample of Swedish twins (535 individuals). We selected CpGs reaching the Bonferroni-corrected significance level (2 × 10–7) or the top-ranked 20 CpGs with the lowest P values if they did not reach this significance level in EWAS analysis associated with non-stroke CVD, overall stroke, and ischemic stroke, respectively. We further applied a bivariate autoregressive latent trajectory model with structured residuals (ALT-SR) to evaluate the cross-lagged effect between DNA methylation of these CpGs and cardiometabolic traits (blood lipids, blood pressure, and body mass index). Furthermore, mediation analysis was performed to evaluate whether the cross-lagged effects had causal impacts on CVD. In the EWAS models, none of the CpGs we selected reached the Bonferroni-corrected significance level. The ALT-SR model showed that DNA methylation levels were more likely to predict the subsequent level of cardiometabolic traits rather than the other way around (numbers of significant cross-lagged paths of methylation → trait/trait → methylation were 84/4, 45/6, 66/1 for the identified three CpG sets, respectively). Finally, we demonstrated significant indirect effects from DNA methylation on CVD mediated by cardiometabolic traits.Conclusions: We present evidence for a directional association from DNA methylation on cardiometabolic traits and CVD, rather than the opposite, highlighting the role of epigenetics in CVD development. 
  •  
47.
  •  
48.
  • Russell, H, et al. (author)
  • The MLH1 polymorphism rs1800734 and risk of endometrial cancer with microsatellite instability
  • 2020
  • In: Clinical epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 12:1, s. 102-
  • Journal article (peer-reviewed)abstract
    • Both colorectal (CRC, 15%) and endometrial cancers (EC, 30%) exhibit microsatellite instability (MSI) due to MLH1 hypermethylation and silencing. The MLH1 promoter polymorphism, rs1800734 is associated with MSI CRC risk, increased methylation and reduced MLH1 expression. In EC samples, we investigated rs1800734 risk using MSI and MSS cases and controls. We found no evidence that rs1800734 or other MLH1 SNPs were associated with the risk of MSI EC. We found the rs1800734 risk allele had no effect on MLH1 methylation or expression in ECs. We propose that MLH1 hypermethylation occurs by different mechanisms in CRC and EC.
  •  
49.
  • Sanchez, Hugo, et al. (author)
  • High levels of circulating folate concentrations are associated with DNA methylation of tumor suppressor and repair genes p16, MLH1, and MGMT in elderly Chileans
  • 2017
  • In: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7075 .- 1868-7083. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Background: Changes in DNA methylation, one of the most studied epigenetic mechanisms, are considered an initial marker for early cancer detection. We evaluated how availability of dietary factors (folates and vitamin B12) involved in one-carbon metabolism may contribute to DNA methylation changes of cancer-related genes in human subjects. Methods: We studied, by pyrosequencing, the methylation of tumor suppressor gene p16, DNA repair genes MLH1 and MGMT, and the repetitive element LINE-1 (as a surrogate for global DNA methylation), in blood of elderly individuals (n = 249) who had been exposed to folic acid (FA) through FA-fortified wheat flour during the last 12 years. Results: We found that serum folate and to a lesser extent, vitamin B12 concentrations, were significantly correlated with DNA methylation of p16, MLH1, and MGMT, but not with LINE-1. High serum folate concentrations (>45.3 nmol/L) were present in 31.1% of the participants. Although the methylated fraction of CpG sites in p16, MLH1, and MGMT was low (1.17-3.8%), high folate concentrations were significantly associated with methylation at the 3rd tertile of specific CpG sites in all genes with OR between 1.97 and 4.17. Conclusions: This study shows that a public policy, like food fortification with FA that increases circulating serum folate levels, could affect methylation levels of specific genes linked to cancer risk. Our present results deserve additional studies to clarify the real impact of high FA levels for risk of cancer in a whole population chronically exposed to a fortified food such as wheat flour. Trial registration: ISRCTN 48153354 and ISRCTN 02694183.
  •  
50.
  • Sarno, F, et al. (author)
  • Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside
  • 2021
  • In: Clinical epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 13:1, s. 66-
  • Journal article (peer-reviewed)abstract
    • Despite impressive efforts invested in epigenetic research in the last 50 years, clinical applications are still lacking. Only a few university hospital centers currently use epigenetic biomarkers at the bedside. Moreover, the overall concept of precision medicine is not widely recognized in routine medical practice and the reductionist approach remains predominant in treating patients affected by major diseases such as cancer and cardiovascular diseases. By its’ very nature, epigenetics is integrative of genetic networks. The study of epigenetic biomarkers has led to the identification of numerous drugs with an increasingly significant role in clinical therapy especially of cancer patients. Here, we provide an overview of clinical epigenetics within the context of network analysis. We illustrate achievements to date and discuss how we can move from traditional medicine into the era of network medicine (NM), where pathway-informed molecular diagnostics will allow treatment selection following the paradigm of precision medicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 75

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view