SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2198 3844 OR L773:2198 3844 "

Search: L773:2198 3844 OR L773:2198 3844

  • Result 1-50 of 135
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abarkan, Myriam, et al. (author)
  • Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Micro-Organ Signals
  • 2022
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 9:8
  • Journal article (peer-reviewed)abstract
    • Electrical signals are fundamental to key biological events such as brain activity, heartbeat, or vital hormone secretion. Their capture and analysis provide insight into cell or organ physiology and a number of bioelectronic medical devices aim to improve signal acquisition. Organic electrochemical transistors (OECT) have proven their capacity to capture neuronal and cardiac signals with high fidelity and amplification. Vertical PEDOT:PSS-based OECTs (vOECTs) further enhance signal amplification and device density but have not been characterized in biological applications. An electronic board with individually tuneable transistor biases overcomes fabrication induced heterogeneity in device metrics and allows quantitative biological experiments. Careful exploration of vOECT electric parameters defines voltage biases compatible with reliable transistor function in biological experiments and provides useful maximal transconductance values without influencing cellular signal generation or propagation. This permits successful application in monitoring micro-organs of prime importance in diabetes, the endocrine pancreatic islets, which are known for their far smaller signal amplitudes as compared to neurons or heart cells. Moreover, vOECTs capture their single-cell action potentials and multicellular slow potentials reflecting micro-organ organizations as well as their modulation by the physiological stimulator glucose. This opens the possibility to use OECTs in new biomedical fields well beyond their classical applications.
  •  
2.
  • Abdullaeva, Oliya, et al. (author)
  • Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels
  • 2022
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 9:3
  • Journal article (peer-reviewed)abstract
    • H2O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2O2). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2O2-sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2O2 delivery system, paving the way to ROS-based organic bioelectronics.
  •  
3.
  • Ahmed, Mohammad Shamsuddin, et al. (author)
  • Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries
  • 2021
  • In: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 8:21
  • Research review (peer-reviewed)abstract
    • Metal–sulfur batteries (MSBs) provide high specific capacity due to the reversible redox mechanism based on conversion reaction that makes this battery a more promising candidate for next-generation energy storage systems. Recently, along with elemental sulfur (S8), sulfurized polyacrylonitrile (SPAN), in which active sulfur moieties are covalently bounded to carbon backbone, has received significant attention as an electrode material. Importantly, SPAN can serve as a universal cathode with minimized metal–polysulfide dissolution because sulfur is immobilized through covalent bonding at the carbon backbone. Considering these unique structural features, SPAN represents a new approach beyond elemental S8 for MSBs. However, the development of SPAN electrodes is in its infancy stage compared to conventional S8 cathodes because several issues such as chemical structure, attached sulfur chain lengths, and over-capacity in the first cycle remain unresolved. In addition, physical, chemical, or specific treatments are required for tuning intrinsic properties such as sulfur loading, porosity, and conductivity, which have a pivotal role in improving battery performance. This review discusses the fundamental and technological discussions on SPAN synthesis, physicochemical properties, and electrochemical performance in MSBs. Further, the essential guidance will provide research directions on SPAN electrodes for potential and industrial applications of MSBs.
  •  
4.
  • Altay, Özlem, et al. (author)
  • Combined Metabolic Activators Accelerates Recovery in Mild-to-Moderate COVID-19
  • 2021
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 8:17
  • Journal article (peer-reviewed)abstract
    • COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.
  •  
5.
  • Andersson, Olof, 1978-, et al. (author)
  • Scalable Electronic Ratchet with Over 10% Rectification Efficiency
  • 2020
  • In: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 7:3
  • Journal article (peer-reviewed)abstract
    • Electronic ratchets use a periodic potential with broken inversion symmetry to rectify undirected (electromagnetic, EM) forces and can in principle be a complement to conventional diode-based designs. Unfortunately, ratchet devices reported to date have low or undetermined power conversion efficiencies, hampering applicability. Combining experiments and numerical modeling, field-effect transistor-based ratchets are investigated in which the driving signal is coupled into the accumulation layer via interdigitated finger electrodes that are capacitively coupled to the field effect transistor channel region. The output current-voltage curves of these ratchets can have a fill factor amp;gt;amp;gt; 0.25 which is highly favorable for the power output. Experimentally, a maximum power conversion efficiency well over 10% at 5 MHz, which is the highest reported value for an electronic ratchet, is determined. Device simulations indicate this number can be increased further by increasing the device asymmetry. A scaling analysis shows that the frequency range of optimal performance can be scaled to the THz regime, and possibly beyond, while adhering to technologically realistic parameters. Concomitantly, the power output density increases from approximate to 4 W m(-2) to approximate to 1 MW m(-2). Hence, this type of ratchet device can rectify high-frequency EM fields at reasonable efficiencies, potentially paving the way for actual use as energy harvester.
  •  
6.
  • Bernacka Wojcik, Iwona, et al. (author)
  • Flexible Organic Electronic Ion Pump for Flow-Free Phytohormone Delivery into Vasculature of Intact Plants
  • 2023
  • In: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Journal article (peer-reviewed)abstract
    • Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.
  •  
7.
  • Bi, Chenghao, et al. (author)
  • Spontaneous Self-Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission
  • 2019
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 6:13
  • Journal article (peer-reviewed)abstract
    • Colloidal all-inorganic perovskite nanocrystals have gained significant attention as a promising material for both fundamental and applied research due to their excellent emission properties. However, reported photoluminescence quantum yields (PL QYs) of blue-emitting perovskite nanocrystals are rather low, mostly due to the fact that the high energy excitons for such wide bandgap materials are easily captured by interband traps, and then decay nonradiatively. In this work, it is demonstrated how to tackle this issue, performing self-assembly of 2D perovskite nanoplatelets into larger size (≈50 nm × 50 nm × 20 nm) cuboid crystals. In these structures, 2D nanoplatelets being isolated from each other within the cuboidal scaffold by organic ligands constitute multiple quantum wells, where exciton localization on potential disorder sites helps them to bypass nonradiative channels present in other platelets. As a result, the cuboid crystals show an extremely high PL QY of 91% of the emission band centered at 480 nm. Moreover, using the same synthetic method, mixed-anion CsPb(Br/Cl) 3 cuboid crystals with blue emission peaks ranging from 452 to 470 nm, and still high PL QYs in the range of 72–83% are produced.
  •  
8.
  • Bianchi, Michele, et al. (author)
  • Poly(3,4‐ethylenedioxythiophene)‐Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications
  • 2022
  • In: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 9:12
  • Research review (peer-reviewed)abstract
    • Next‐generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio‐temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy‐efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic–abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic‐electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state‐of‐the‐art of poly(3,4‐ethylenedioxythiophene)‐based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready‐for‐clinical‐use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
  •  
9.
  •  
10.
  •  
11.
  • Böhler, Christian, et al. (author)
  • Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thin-Film Intracortical Implants
  • 2023
  • In: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 10:14
  • Journal article (peer-reviewed)abstract
    • Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10–60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.
  •  
12.
  • Canton, Sophie E., et al. (author)
  • Ultrafast Jahn-Teller Photoswitching in Cobalt Single-Ion Magnets
  • 2023
  • In: Advanced Science. - 2198-3844. ; 10:21
  • Journal article (peer-reviewed)abstract
    • Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
  •  
13.
  • Caprettini, Valeria, et al. (author)
  • Enhanced Raman Investigation of Cell Membrane and Intracellular Compounds by 3D Plasmonic Nanoelectrode Arrays
  • 2018
  • In: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 5:12
  • Journal article (peer-reviewed)abstract
    • 3D nanostructures are widely exploited in cell cultures for many purposes such as controlled drug delivery, transfection, intracellular sampling, and electrical recording. However, little is known about the interaction of the cells with these substrates, and even less about the effects of electroporation on the cellular membrane and the nuclear envelope. This work exploits 3D plasmonic nanoelectrodes to study, by surface-enhanced Raman scattering (SERS), the cell membrane dynamics on the nanostructured substrate before, during, and after electroporation. In vitro cultured cells tightly adhere on 3D plasmonic nanoelectrodes precisely in the plasmonic hot spots, making this kind of investigation possible. After electroporation, the cell membrane dynamics are studied by recording the Raman time traces of biomolecules in contact or next to the 3D plasmonic nanoelectrode. During this process, the 3D plasmonic nanoelectrodes are intracellularly coupled, thus enabling the monitoring of different molecular species, including lipids, proteins, and nucleic acids. Scanning electron microscopy cross-section analysis evidences the possibility of nuclear membrane poration compatible with the reported Raman spectra. These findings may open a new route toward controlled intracellular sampling and intranuclear delivery of genic materials. They also show the possibility of nuclear envelope disruption which may lead to negative side effects.
  •  
14.
  • Cen, Xiaohong, et al. (author)
  • TLR1/2 Specific Small-Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes
  • 2019
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 6:10
  • Journal article (peer-reviewed)abstract
    • Toll-like receptor 2 (TLR2) expressed on antigen presenting cells evokes a series of critical cytokines, which favor the development of tumor-specific cytotoxic T lymphocytes (CTLs). Therefore, TLR2 represents an attractive cancer immunotherapeutic target. Here, a synthetic library of 14 000 compounds together with a series of newly developed compounds for NF-κB activation using HEK-Blue hTLR2 cells is initially screened. Following further screening in a variety of cells including HEK-Blue hTLRs reporter cells, murine, and human macrophage cell lines, a potent small molecule agonist 23 (SMU-Z1) is identified, which specifically activates TLR2 through its association with TLR1, with a EC50 of 4.88 ± 0.79 × 10-9 m. Toxicology studies, proinflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, and nitric oxide) and target-protein based biophysical assays demonstrate the pharmacologically relevant characteristics of SMU-Z1. In addition, SMU-Z1 promotes murine splenocyte proliferation and upregulates the expression of CD8+ T cells, NK cells and DCs, which results in a significant antitumor effect in a murine leukemia model. Finally, the induced tumors in three out of seven mice disappear after administration of SMU-Z1. Our studies thus identify a novel and potent TLR1/2 small molecule agonist, which displays promising immune adjuvant properties and antitumor immunity.
  •  
15.
  • Chen, Shiqian, et al. (author)
  • Ultrafast metal-free microsupercapacitor arrays directly store instantaneous high-voltage electricity from mechanical energy harvesters
  • 2024
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 11:22
  • Journal article (peer-reviewed)abstract
    • Harvesting renewable mechanical energy is envisioned as a promising and sustainable way for power generation. Many recent mechanical energy harvesters are able to produce instantaneous (pulsed) electricity with a high peak voltage of over 100 V. However, directly storing such irregular high-voltage pulse electricity remains a great challenge. The use of extra power management components can boost storage efficiency but increase system complexity. Here utilizing the conducting polymer PEDOT:PSS, high-rate metal-free micro-supercapacitor (MSC) arrays are successfully fabricated for direct high-efficiency storage of high-voltage pulse electricity. Within an area of 2.4 × 3.4 cm2 on various paper substrates, large-scale MSC arrays (comprising up to 100 cells) can be printed to deliver a working voltage window of 160 V at an ultrahigh scan rate up to 30 V s−1. The ultrahigh rate capability enables the MSC arrays to quickly capture and efficiently store the high-voltage (≈150 V) pulse electricity produced by a droplet-based electricity generator at a high efficiency of 62%, significantly higher than that (<2%) of the batteries or capacitors demonstrated in the literature. Moreover, the compact and metal-free features make these MSC arrays excellent candidates for sustainable high-performance energy storage in self-charging power systems.
  •  
16.
  • Chong, Hui, et al. (author)
  • Organo-ptii complexes for potent photodynamic inactivation of multi-drug resistant bacteria and the influence of configuration
  • 2024
  • In: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:14
  • Journal article (peer-reviewed)abstract
    • PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm−2) and 100 nM (18 J cm−2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm−2) and 1.50 µM (18 J cm−2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.
  •  
17.
  • Dejea, Hector, et al. (author)
  • In Situ Loading and Time-Resolved Synchrotron-Based Phase Contrast Tomography for the Mechanical Investigation of Connective Knee Tissues : A Proof-of-Concept Study
  • In: Advanced Science. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously. Time-resolved synchrotron-based X-ray phase-contrast tomography (SR-PhC-µCT) allows to capture the tissue dynamics. This proof-of-concept study presents a rheometer setup for simultaneous in situ unconfined compression and SR-PhC-µCT of connective knee tissues. The microstructural response of bovine cartilage (n = 16) and meniscus (n = 4) samples under axial continuously increased strain, or two steps of 15% strain (stress–relaxation) is studied. The chondrocyte distribution in cartilage and the collagen fiber orientation in the meniscus are assessed. Variations in chondrocyte density reveal an increase in the top 40% of the sample during loading, compared to the lower half. Meniscus collagen fibers reorient perpendicular to the loading direction during compression and partially redisperse during relaxation. Radiation damage, image repeatability, and image quality assessments show little to no effects on the results. In conclusion, this approach is highly promising for future studies of human knee tissues to understand their microstructure, mechanical response, and progression in degenerative diseases.
  •  
18.
  • Du, Jian, et al. (author)
  • Iron-Salen Complex and Co2+ Ion-Derived Cobalt-Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution Electrocatalyst
  • 2019
  • In: Advanced Science. - : WILEY. - 2198-3844. ; 6:12
  • Journal article (peer-reviewed)abstract
    • Metal-salen complexes are widely used as catalysts in numerous fundamental organic transformation reactions. Here, CoFe hydroxide/carbon nanohybrid is reported as an efficient oxygen evolution electrocatalyst derived from the in situ formed molecular Fe-salen complexes and Co2+ ions at a low temperature of 160 degrees C. It has been evidenced that Fe-salen as a molecular precursor facilitates the confined-growth of metal hydroxides, while Co2+ plays a critical role in catalyzing the transformation of organic ligand into nanocarbons and constitutes an essential component for CoFe hydroxide. The resulting Co1.2Fe/C hybrid material requires an overpotential of 260 mV at a current density of 10 mA cm(-2) with high durability. The high activity is contributed to uniform distribution of CoFe hydroxides on carbon layer and excellent electron conductivity caused by intimate contact between metal and nanocarbon. Given the diversity of molecular precursors, these results represent a promising approach to high-performance carbon-based water splitting catalysts.
  •  
19.
  •  
20.
  • Enrico, Alessandro, et al. (author)
  • Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
  • 2024
  • In: Advanced Science. - : Wiley. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 mu m) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research. Ultrafast focused femtosecond laser has been introduced for the direct micropatterning of organic electrochemical transistors (OECTs), providing high resolution (2 mu m), selective cleanroom-free patterning of insulating and conjugated polymer layers while preserving device operation, and high flexibility in device design. The approach has been validated in the fabrication of complementary inverters and glucose biosensors.image
  •  
21.
  • Finegan, Donal P, et al. (author)
  • Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High-Speed Operando Tomography and Digital Volume Correlation
  • 2015
  • In: Advanced Science. - : Wiley. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high-speed operando synchrotron X-ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real-time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral-wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time-lapse X-ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.
  •  
22.
  • Galle, Marco H.J.J., et al. (author)
  • Self-Healing Ability of Perovskites Observed via Photoluminescence Response on Nanoscale Local Forces and Mechanical Damage
  • 2023
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 10:1
  • Journal article (peer-reviewed)abstract
    • The photoluminescence (PL) of metal halide perovskites can recover after light or current-induced degradation. This self-healing ability is tested by acting mechanically on MAPbI3 polycrystalline microcrystals by an atomic force microscope tip (applying force, scratching, and cutting) while monitoring the PL. Although strain and crystal damage induce strong PL quenching, the initial balance between radiative and nonradiative processes in the microcrystals is restored within a few minutes. The stepwise quenching–recovery cycles induced by the mechanical action is interpreted as a modulation of the PL blinking behavior. This study proposes that the dynamic equilibrium between active and inactive states of the metastable nonradiative recombination centers causing blinking is perturbed by strain. Reversible stochastic transformation of several nonradiative centers per microcrystal under application/release of the local stress can lead to the observed PL quenching and recovery. Fitting the experimental PL trajectories by a phenomenological model based on viscoelasticity provides a characteristic time of strain relaxation in MAPbI3 on the order of 10–100 s. The key role of metastable defect states in nonradiative losses and in the self-healing properties of perovskites is suggested.
  •  
23.
  •  
24.
  • Gerasimov, Jennifer, et al. (author)
  • A Biologically Interfaced Evolvable Organic Pattern Classifier
  • 2023
  • In: Advanced Science. - : WILEY. - 2198-3844. ; 10:14
  • Journal article (peer-reviewed)abstract
    • Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifiers output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.
  •  
25.
  • Gerasimov, Jennifer, et al. (author)
  • An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications
  • 2019
  • In: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 6:7
  • Journal article (peer-reviewed)abstract
    • An evolvable organic electrochemical transistor (OECT), operating in the hybrid accumulation-depletion mode is reported, which exhibits short-term and long-term memory functionalities. The transistor channel, formed by an electropolymerized conducting polymer, can be formed, modulated, and obliterated in situ and under operation. Enduring changes in channel conductance, analogous to long-term potentiation and depression, are attained by electropolymerization and electrochemical overoxidation of the channel material, respectively. Transient changes in channel conductance, analogous to short-term potentiation and depression, are accomplished by inducing nonequilibrium doping states within the transistor channel. By manipulating the input signal, the strength of the transistor response to a given stimulus can be modulated within a range that spans several orders of magnitude, producing behavior that is directly comparable to short- and long-term neuroplasticity. The evolvable transistor is further incorporated into a simple circuit that mimics classical conditioning. It is forecasted that OECTs that can be physically and electronically modulated under operation will bring about a new paradigm of machine learning based on evolvable organic electronics.
  •  
26.
  • Gjorgjieva, Tamara, et al. (author)
  • Loss of beta-Actin Leads to Accelerated Mineralization and Dysregulation of Osteoblast-Differentiation Genes during Osteogenic Reprogramming
  • 2020
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 7:23
  • Journal article (peer-reviewed)abstract
    • Actin plays fundamental roles in both the cytoplasm and the cell nucleus. In the nucleus, beta-actin regulates neuronal reprogramming by consolidating a heterochromatin landscape required for transcription of neuronal gene programs, yet it remains unknown whether it has a role in other differentiation models. To explore the potential roles of beta-actin in osteogenesis, beta-actin wild-type (WT) and beta-actin knockout (KO) mouse embryonic fibroblasts (MEFs) are reprogrammed to osteoblast-like cells using small molecules in vitro. It is discovered that loss of beta-actin leads to an accelerated mineralization phenotype (hypermineralization), accompanied with enhanced formation of extracellular hydroxyapatite microcrystals, which originate in the mitochondria in the form of microgranules. This phenotype is a consequence of rapid upregulation of mitochondrial genes including those involved in oxidative phosphorylation (OXPHOS) in reprogrammed KO cells. It is further found that osteogenic gene programs are differentially regulated between WT and KO cells, with clusters of genes exhibiting different temporal expression patterns. A novel function for beta-actin in osteogenic reprogramming through a mitochondria-based mechanism that controls cell-mediated mineralization is proposed.
  •  
27.
  • Gladisch, Johannes, et al. (author)
  • Reversible Electronic Solid-Gel Switching of a Conjugated Polymer
  • 2020
  • In: ADVANCED SCIENCE. - : WILEY. - 2198-3844. ; 7:2
  • Journal article (peer-reviewed)abstract
    • Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000-10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid-state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.
  •  
28.
  •  
29.
  • Groß, Rüdiger, et al. (author)
  • Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2
  • 2022
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 9:20
  • Journal article (peer-reviewed)abstract
    • Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core–shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses. 
  •  
30.
  • Grubisic-Cabo, Antonija, et al. (author)
  • In Situ Exfoliation Method of Large-Area 2D Materials
  • 2023
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 10:22
  • Journal article (peer-reviewed)abstract
    • 2D materials provide a rich platform to study novel physical phenomena arising from quantum confinement of charge carriers. Many of these phenomena are discovered by surface sensitive techniques, such as photoemission spectroscopy, that work in ultra-high vacuum (UHV). Success in experimental studies of 2D materials, however, inherently relies on producing adsorbate-free, large-area, high-quality samples. The method that yields 2D materials of highest quality is mechanical exfoliation from bulk-grown samples. However, as this technique is traditionally performed in a dedicated environment, the transfer of samples into vacuum requires surface cleaning that might diminish the quality of the samples. In this article, a simple method for in situ exfoliation directly in UHV is reported, which yields large-area, single-layered films. Multiple metallic and semiconducting transition metal dichalcogenides are exfoliated in situ onto Au, Ag, and Ge. The exfoliated flakes are found to be of sub-millimeter size with excellent crystallinity and purity, as supported by angle-resolved photoemission spectroscopy, atomic force microscopy, and low-energy electron diffraction. The approach is well-suited for air-sensitive 2D materials, enabling the study of a new suite of electronic properties. In addition, the exfoliation of surface alloys and the possibility of controlling the substrate-2D material twist angle is demonstrated.
  •  
31.
  •  
32.
  • Han, Shaobo, et al. (author)
  • A Multiparameter Pressure–Temperature–Humidity Sensor Based on Mixed Ionic–Electronic Cellulose Aerogels
  • 2019
  • In: Advanced Science. - : Wiley. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P–T–H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion–electron conducting aerogel is reported, which can sense P–T–H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion–electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications. © 2019 The Authors.
  •  
33.
  • Hao, Yan, et al. (author)
  • Peripheral Hole Acceptor Moieties on an Organic Dye Improve Dye-Sensitized Solar Cell Performance
  • 2015
  • In: Advanced Science. - : Wiley-Blackwell. - 2198-3844. ; 2:11
  • Journal article (peer-reviewed)abstract
    • Investigation of charge transfer dynamics in dye-sensitized solar cells is of fundamental interest and the control of these dynamics is a key factor for developing more efficient solar cell devices. One possibility for attenuating losses through recombination between injected electrons and oxidized dye molecules is to move the positive charge further away from the metal oxide surface. For this purpose, a metal-free dye named E6 is developed, in which the chromophore core is tethered to two external triphenylamine (TPA) units. After photoinduced electron injection into TiO2, the remaining hole is rapidly transferred to a peripheral TPA unit. Electron-hole recombination is slowed down by 30% compared to a reference dye without peripheral TPA units. Furthermore, it is found that the added TPA moieties improve the electron blocking effect of the dye, retarding recombination of electrons from TiO2 to the cobalt-based electrolyte.
  •  
34.
  • Harland, Bruce, et al. (author)
  • A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats
  • 2022
  • In: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 9:20
  • Journal article (peer-reviewed)abstract
    • Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord. The bioelectronic implant is maintained in rats for a period of 12 weeks. The first subdural recordings of spinal cord activity in freely moving animals are presented; rats are plugged in via a recording cable and allowed to freely behave and move around on a raised platform. Recordings contained multiple distinct voltage waveforms spatially localize to individual electrodes. This device has great potential to monitor electrical signaling in the spinal cord after an injury and in the future, this implant will facilitate the identification of biomarkers in spinal cord injury and recovery, while enabling the delivery of localized electroceutical and chemical treatments.
  •  
35.
  • Huss, Jessica C., et al. (author)
  • Climate-Dependent Heat-Triggered Opening Mechanism of Banksia Seed Pods
  • 2018
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 5:1
  • Journal article (peer-reviewed)abstract
    • Heat-triggered fruit opening and delayed release of mature seeds are widespread among plants in fire-prone ecosystems. Here, the material characteristics of the seed-containing follicles of Banksia attenuata (Proteaceae), which open in response to heat frequently caused by fire, are investigated. Material analysis reveals that long-term dimensional stability and opening temperatures of follicles collected across an environmental gradient increase as habitats become drier, hotter, and more fire prone. A gradual increase in the biaxial curvature of the hygroscopic valves provides the follicles in the driest region with the highest flexural rigidity. The irreversible deformation of the valves for opening is enabled via a temperature-dependent reduction of the elastic modulus of the innermost tissue layer, which then allows releasing the stresses previously generated by shrinkage of the fiber bundles in the adjacent layer during follicle drying. These findings illustrate the level of sophistication by which this species optimizes its fruit opening mechanism over a large distribution range with varying environmental conditions, and may not only have great relevance for developing biomimetic actuators, but also for elucidating the species' capacity to cope with climatic changes.
  •  
36.
  • Iakunkov, Artem, et al. (author)
  • Swelling of Ti3C2Tx mxene in water and methanol at extreme pressure conditions
  • 2024
  • In: Advanced Science. - : John Wiley & Sons. - 2198-3844. ; 11:9
  • Journal article (peer-reviewed)abstract
    • Pressure-induced swelling has been reported earlier for several hydrophilic layered materials. MXene Ti3C2Tx is also a hydrophilic layered material composed by 2D sheets but so far pressure-induced swelling is reported for this material only under conditions of shear stress at MPa pressures. Here, high-pressure experiments are performed with MXenes prepared by two methods known to provide “clay-like” materials. MXene synthesized by etching MAX phase with HCl+LiF demonstrates the effect of pressure-induced swelling at 0.2 GPa with the insertion of additional water layer. The transition is incomplete with two swollen phases (ambient with d(001) = 16.7Å and pressure-induced with d(001) = 19.2Å at 0.2 GPa) co-existing up to the pressure point of water solidification. Therefore, the swelling transition corresponds to change from two-layer water intercalation (2L-phase) to a never previously observed three-layer water intercalation (3L-phase) of MXene. Experiments with MXene prepared by LiCl+HF etching have not revealed pressure-induced swelling in liquid water. Both MXenes also show no anomalous compressibility in liquid methanol. The presence of pressure-induced swelling only in one of the MXenes indicates that the HCl+LiF synthesis method is likely to result in higher abundance of hydrophilic functional groups terminating 2D titanium carbide.
  •  
37.
  • Jain, Saumey, et al. (author)
  • On-Chip Neural Induction Boosts Neural Stem Cell Commitment : Toward a Pipeline for iPSC-Based Therapies
  • 2024
  • In: Advanced science (Weinheim, Baden-Wurttemberg, Germany). - : Wiley-VCH Verlagsgesellschaft. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • The clinical translation of induced pluripotent stem cells (iPSCs) holds great potential for personalized therapeutics. However, one of the main obstacles is that the current workflow to generate iPSCs is expensive, time-consuming, and requires standardization. A simplified and cost-effective microfluidic approach is presented for reprogramming fibroblasts into iPSCs and their subsequent differentiation into neural stem cells (NSCs). This method exploits microphysiological technology, providing a 100-fold reduction in reagents for reprogramming and a ninefold reduction in number of input cells. The iPSCs generated from microfluidic reprogramming of fibroblasts show upregulation of pluripotency markers and downregulation of fibroblast markers, on par with those reprogrammed in standard well-conditions. The NSCs differentiated in microfluidic chips show upregulation of neuroectodermal markers (ZIC1, PAX6, SOX1), highlighting their propensity for nervous system development. Cells obtained on conventional well plates and microfluidic chips are compared for reprogramming and neural induction by bulk RNA sequencing. Pathway enrichment analysis of NSCs from chip showed neural stem cell development enrichment and boosted commitment to neural stem cell lineage in initial phases of neural induction, attributed to a confined environment in a microfluidic chip. This method provides a cost-effective pipeline to reprogram and differentiate iPSCs for therapeutics compliant with current good manufacturing practices.
  •  
38.
  • Ji, Fuxiang, et al. (author)
  • Amine Gas-Induced Reversible Optical Bleaching of Bismuth-Based Lead-Free Perovskite Thin Films
  • 2024
  • In: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
39.
  • Ji, Fuxiang, et al. (author)
  • Amine Gas‐Induced Reversible Optical Bleaching of Bismuth‐Based Lead‐Free Perovskite Thin Films
  • 2023
  • In: Advanced Science. - : WILEY. - 2198-3844. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
40.
  • Jiang, Hui, et al. (author)
  • Nuclear AIM2-Like Receptors Drive Genotoxic Tissue Injury by Inhibiting DNA Repair
  • 2021
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 8:22
  • Journal article (peer-reviewed)abstract
    • Radiation is an essential preparative procedure for bone marrow (BM) transplantation and cancer treatment. The therapeutic efficacy of radiation and associated toxicity varies from patient to patient, making it difficult to prescribe an optimal patient-specific irradiation dose. The molecular determinants of radiation response remain unclear. AIM2-like receptors (ALRs) are key players in innate immunity and determine the course of infections, inflammatory diseases, senescence, and cancer. Here it is reported that mice lacking ALRs are resistant to irradiation-induced BM injury. It is shown that nuclear ALRs are inhibitors of DNA repair, thereby accelerate genome destabilization, micronuclei generation, and cell death, and that this novel function is uncoupled from their role in innate immunity. Mechanistically, ALRs bind to and interfere with chromatin decompaction vital for DNA repair. The finding uncovers ALRs as targets for new interventions against genotoxic tissue injury and as possible biomarkers for predicting the outcome of radio/chemotherapy. 
  •  
41.
  • Jiang, Sheng, et al. (author)
  • Constructing Chromium Multioxide Hole-Selective Heterojunction for High-Performance Perovskite Solar Cells
  • 2022
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 9:30
  • Journal article (peer-reviewed)abstract
    • Perovskite solar cells (PSCs) suffer from significant nonradiative recombination at perovskite/charge transport layer heterojunction, seriously limiting their power conversion efficiencies. Herein, solution-processed chromium multioxide (CrOx) is judiciously selected to construct a MAPbI(3)/CrOx/Spiro-OMeTAD hole-selective heterojunction. It is demonstrated that the inserted CrOx not only effectively reduces defect sites via redox shuttle at perovskite contact, but also decreases valence band maximum (VBM)-HOMO offset between perovskite and Spiro-OMeTAD. This will diminish thermionic losses for collecting holes and thus promote charge transport across the heterojunction, suppressing both defect-assisted recombination and interface carrier recombination. As a result, a remarkable improvement of 21.21% efficiency with excellent device stability is achieved compared to 18.46% of the control device, which is among the highest efficiencies for polycrystalline MAPbI(3) based n-i-p planar PSCs reported to date. These findings of this work provide new insights into novel charge-selective heterojunctions for further enhancing efficiency and stability of PSCs.
  •  
42.
  •  
43.
  •  
44.
  • Kajtez, Janko, et al. (author)
  • 3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural Devices
  • 2020
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 7:16
  • Journal article (peer-reviewed)abstract
    • Compartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system. Suitability of the method for multimaterial integration allows to tailor the device architecture for the long-term maintenance of healthy human stem-cell derived neurons and astrocytes, spanning at least 40 days. Leveraging fast-prototyping capabilities at both micro and macroscale, a proof-of-principle human in vitro model of the nigrostriatal pathway is created. By presenting a route for novel materials and unique architectures in microfluidic systems, the method provides new possibilities in biological research beyond neuroscience applications.
  •  
45.
  • Kajtez, Janko, et al. (author)
  • Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs
  • 2022
  • In: Advanced science (Weinheim, Baden-Wurttemberg, Germany). - : Wiley. - 2198-3844. ; 9:25
  • Journal article (peer-reviewed)abstract
    • Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.
  •  
46.
  • Kang, Evan S. H., et al. (author)
  • Organic Anisotropic Excitonic Optical Nanoantennas
  • 2022
  • In: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 9:23
  • Journal article (peer-reviewed)abstract
    • Optical nanoantennas provide control of light at the nanoscale, which makes them important for diverse areas ranging from photocatalysis and flat metaoptics to sensors and biomolecular tweezing. They have traditionally been limited to metallic and dielectric nanostructures that sustain plasmonic and Mie resonances, respectively. More recently, nanostructures of organic J-aggregate excitonic materials have been proposed capable of also supporting nanooptical resonances, although their advance has been hampered from difficulty in nanostructuring. Here, the authors present the realization of organic J-aggregate excitonic nanostructures, using nanocylinder arrays as model system. Extinction spectra show that they can sustain both plasmon-like resonances and dielectric resonances, owing to the material providing negative and large positive permittivity regions at the different sides of its exciton resonance. Furthermore, it is found that the material is highly anisotropic, leading to hyperbolic and elliptic permittivity regions. Nearfield analysis using optical simulation reveals that the nanostructures therefore support hyperbolic localized surface exciton resonances and elliptic Mie resonances, neither of which has been previously demonstrated for this type of material. The anisotropic nanostructures form a new type of optical nanoantennas, which combined with the presented fabrication process opens up for applications such as fully organic excitonic metasurfaces.
  •  
47.
  • Khan, Ziyauddin, et al. (author)
  • Can Hybrid Na-Air Batteries Outperform Nonaqueous Na-O-2 Batteries?
  • 2020
  • In: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 7:5
  • Journal article (peer-reviewed)abstract
    • In recent years, there has been an upsurge in the study of novel and alternative energy storage devices beyond lithium-based systems due to the exponential increase in price of lithium. Sodium (Na) metal-based batteries can be a possible alternative to lithium-based batteries due to the similar electrochemical voltage of Na and Li together with the thousand times higher natural abundance of Na compared to Li. Though two different kinds of Na-O-2 batteries have been studied specifically based on electrolytes until now, very recently, a hybrid Na-air cell has shown distinctive advantage over nonaqueous cell systems. Hybrid Na-air batteries provide a fundamental advantage due to the formation of highly soluble discharge product (sodium hydroxide) which leads to low overpotentials for charge and discharge processes, high electrical energy efficiency, and good cyclic stability. Herein, the current status and challenges associated with hybrid Na-air batteries are reported. Also, a brief description of nonaqueous Na-O-2 batteries and its close competition with hybrid Na-air batteries are provided.
  •  
48.
  • Kiefer, David, 1989, et al. (author)
  • A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics
  • 2017
  • In: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 4:1, s. 1600203-
  • Journal article (peer-reviewed)abstract
    • Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.
  •  
49.
  •  
50.
  • Klementieva, Oxana, et al. (author)
  • Super‐Resolution Infrared Imaging of Polymorphic Amyloid Aggregates Directly in Neurons
  • 2020
  • In: Advanced Science. - : Wiley. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Loss of memory during Alzheimer's disease (AD), a fatal neurodegenerative disorder, is associated with neuronal loss and the aggregation of amyloid proteins into neurotoxic β‐sheet enriched structures. However, the mechanism of amyloid protein aggregation is still not well understood due to many challenges when studying the endogenous amyloid structures in neurons or in brain tissue. Available methods either require chemical processing of the sample or may affect the amyloid protein structure itself. Therefore, new approaches, which allow studying molecular structures directly in neurons, are urgently needed. A novel approach is tested, based on label‐free optical photothermal infrared super‐resolution microspectroscopy, to study AD‐related amyloid protein aggregation directly in the neuron at sub‐micrometer resolution. Using this approach, amyloid protein aggregates are detected at the subcellular level, along the neurites and strikingly, in dendritic spines, which has not been possible until now. Here, a polymorphic nature of amyloid structures that exist in AD transgenic neurons is reported. Based on the findings of this work, it is suggested that structural polymorphism of amyloid proteins that occur already in neurons may trigger different mechanisms of AD progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 135
Type of publication
journal article (129)
research review (6)
Type of content
peer-reviewed (134)
other academic/artistic (1)
Author/Editor
Berggren, Magnus (8)
Stavrinidou, Eleni (5)
Zheng, Kaibo (4)
Crispin, Xavier (4)
Müller, Christian, 1 ... (4)
Fahlman, Mats (3)
show more...
Donahue, Mary (3)
Fabiano, Simone (3)
Gladisch, Johannes (3)
Simon, Daniel (3)
Liu, Xianjie (3)
Zhao, Dan (3)
Boschloo, Gerrit (3)
Zhang, L. (2)
Mardinoglu, Adil (2)
Nielsen, Jens B, 196 ... (2)
Uhlén, Mathias (2)
Arif, Muhammad (2)
Zhang, Cheng (2)
Granberg, Hjalmar (2)
Kere, J (2)
Silverå Ejneby, Mali ... (2)
Zozoulenko, Igor (2)
Lauschke, VM (2)
Wang, W. (2)
Zhang, Yu (2)
Tybrandt, Klas (2)
Olsson, A (2)
Greco, D (2)
Alenius, H (2)
Kahnt, Maik (2)
Vomiero, Alberto (2)
Borén, Jan, 1963 (2)
Parmar, Malin (2)
Isaksson, Hanna (2)
Xiong, Shizhao, 1985 (2)
Hwang, Jang Yeon (2)
Sun, Yang Kook (2)
Jin, Lei (2)
Benetti, Daniele (2)
AlOtaibi, Bandar (2)
Zhao, Haiguang (2)
Mi, Zetian (2)
Rosei, Frederico (2)
Forchheimer, Robert (2)
Lundqvist, D (2)
Rosén, Johanna (2)
Kim, Jaekook (2)
Skoog, T (2)
Buyanova, Irina A, 1 ... (2)
show less...
University
Karolinska Institutet (32)
Linköping University (30)
Lund University (22)
Chalmers University of Technology (22)
Royal Institute of Technology (15)
Stockholm University (13)
show more...
Uppsala University (11)
University of Gothenburg (8)
Luleå University of Technology (8)
Umeå University (6)
RISE (6)
Malmö University (2)
Halmstad University (1)
University of Skövde (1)
show less...
Language
English (135)
Research subject (UKÄ/SCB)
Natural sciences (62)
Engineering and Technology (55)
Medical and Health Sciences (26)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view