SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:2296 634X "

Sökning: L773:2296 634X

  • Resultat 1-50 av 136
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abomaray, F, et al. (författare)
  • The Effect of Mesenchymal Stromal Cells Derived From Endometriotic Lesions on Natural Killer Cell Function
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 612714-
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis is an inflammatory disease that presents with ectopic endometriotic lesions. Reduced immunosurveillance of these lesions has been proposed to be playing a role in the pathology of endometriosis. Mesenchymal stromal cells (MSC) are found in ectopic lesions and may decrease immunosurveillance. In the present study, we examined if MSC contribute to reduced immunosurveillance through their immunosuppressive effects on natural killer (NK) cells. Stromal cells from endometriotic ovarian cysts (ESCcyst) and eutopic endometrium (ESCendo) of women with endometriosis and their conditioned medium were used in co-cultures with allogeneic peripheral blood NK cells. Following culture, NK cells were examined phenotypically for their expression of activating, inhibitory, maturation, and adhesion receptors and co-receptors, as well as the degranulation (CD107a) marker and the immunostimulatory (interferon-γ) and immunosuppressive (transforming growth factor beta 1 and interleukin-10) cytokines. Moreover, NK cell cytotoxicity was examined using chromium 51 release killing assays. There were no differences between ESCcyst and ESCendo regarding their effects on NK cell cytotoxicity in both conditioned medium and direct co-culture experiments. Additionally, there were no differences between ESCcyst and ESCendo regarding their impact on NK cells’ phenotype and degranulation in both conditioned medium and direct co-culture experiments. Although there were no differences found for DNAX accessory molecule-1 (DNAM-1) and NKp44, we found that the expression of the NK cell ligand CD155 that binds DNAM-1 and proliferating cell nuclear antigen (PCNA) that binds NKp44 was significantly less on ESCcyst than on ESCendo. These findings were not supported by the results that the expression of the known and unknown ligands on ESCcyst for DNAM-1 and NKp44 using chimeric proteins was not significantly different compared to ESCendo. In conclusion, the results suggest that ectopic MSC may not contribute to reduced immunosurveillance in endometriosis through their inhibitory effects on NK cells. This suggests that NK cell inhibition in the pelvic cavity of women with endometriosis develops due to other factors.
  •  
2.
  • Ahmed, M, et al. (författare)
  • Combinatorial ECM Arrays Identify Cooperative Roles for Matricellular Proteins in Enhancing the Generation of TH+ Neurons From Human Pluripotent Cells
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 755406-
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of efficient cell culture strategies for the generation of dopaminergic neurons is an important goal for transplantation-based approaches to treat Parkinson’s disease. To identify extracellular matrix molecules that enhance differentiation and might be used in these cell cultures we have used micro-contact printed arrays on glass slides presenting 190 combinations of 19 extracellular matrix molecules selected on the basis of their expression during embryonic development of the ventral midbrain. Using long-term neuroepithelial stem cells (Lt-NES), this approach identified a number of matricellular proteins that enhanced differentiation, with the combination of Sparc, Sparc-like (Sparc-l1) and Nell2 increasing the number of tyrosine hydroxylase+ neurons derived from Lt-NES cells and, critically for further translation, human pluripotent stem cells.
  •  
3.
  • Alfredsson, Viveka, et al. (författare)
  • Morphologies and Structure of Brain Lipid Membrane Dispersions
  • 2021
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to explore the variety of previously unknown morphologies that brain lipids form in aqueous solutions. We study how these structures are dependent on cholesterol content, salt solution composition, and temperature. For this purpose, dispersions of porcine sphingomyelin with varying amounts of cholesterol as well as dispersions of porcine brain lipid extracts were investigated. We used cryo-TEM to investigate the dispersions at high-salt solution content together with small-angle (SAXD) and wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for dispersions in the corresponding salt solution at high lipid content. Sphingomyelin forms multilamellar vesicles in large excess of aqueous salt solution. These vesicles appear as double rippled bilayers in the images and as split Bragg peaks in SAXD together with a very distinct lamellar phase pattern. These features disappear with increasing temperature, and addition of cholesterol as the WAXD data shows that the peak corresponding to the chain crystallinity disappears. The dispersions of sphingomyelin at high cholesterol content form large vesicular type of structures with smooth bilayers. The repeat distance of the lamellar phase depends on temperature, salt solution composition, and slightly with cholesterol content. The brain lipid extracts form large multilamellar vesicles often attached to assemblies of higher electron density. We think that this is probably an example of supra self-assembly with a multiple-layered vesicle surrounding an interior cubic microphase. This is challenging to resolve. DSC shows the presence of different kinds of water bound to the lipid aggregates as a function of the lipid content. Comparison with the effect of lithium, sodium, and calcium salts on the structural parameters of the sphingomyelin and the morphologies of brain lipid extract morphologies demonstrate that lithium has remarkable effects also at low content.
  •  
4.
  • Alikhani, HK, et al. (författare)
  • Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications
  • 2022
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 10, s. 894800-
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
  •  
5.
  •  
6.
  • Ameer, Shegufta, et al. (författare)
  • Exposure to Inorganic Arsenic Is Associated with Increased Mitochondrial DNA Copy Number and Longer Telomere Length in Peripheral Blood
  • 2016
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exposure to inorganic arsenic (iAs) through drinking water causes cancer. Alterations in mitochondrial DNA copy number (mtDNAcn) and telomere length in blood have been associated with cancer risk. We elucidated if arsenic exposure alters mtDNAcn and telomere length in individuals with different arsenic metabolizing capacity.METHODS: We studied two groups in the Salta province, Argentina, one in the Puna area of the Andes (N = 264, 89% females) and one in Chaco (N = 169, 75% females). We assessed arsenic exposure as the sum of arsenic metabolites [iAs, methylarsonic acid (MMA), dimethylarsinic acid (DMA)] in urine (U-As) using high-performance liquid chromatography coupled with hydride generation and inductively coupled plasma mass spectrometry. Efficiency of arsenic metabolism was expressed as percentage of urinary metabolites. MtDNAcn and telomere length were determined in blood by real-time PCR.RESULTS: Median U-As was 196 (5-95 percentile: 21-537) μg/L in Andes and 80 (5-95 percentile: 15-1637) μg/L in Chaco. The latter study group had less-efficient metabolism, with higher %iAs and %MMA in urine compared with the Andean group. U-As was significantly associated with increased mtDNAcn (log2 transformed to improve linearity) in Chaco (β = 0.027 per 100 μg/L, p = 0.0085; adjusted for age and sex), but not in Andes (β = 0.025, p = 0.24). U-As was also associated with longer telomere length in Chaco (β = 0.016, p = 0.0066) and Andes (β = 0.0075, p = 0.029). In both populations, individuals with above median %iAs showed significantly higher mtDNAcn and telomere length compared with individuals with below median %iAs.CONCLUSIONS: Arsenic was associated with increased mtDNAcn and telomere length, particularly in individuals with less-efficient arsenic metabolism, a group who may have increased risk for arsenic-related cancer.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Attwood, Misty M., et al. (författare)
  • Characterization of five transmembrane proteins : With focus on the Tweety, Sidoreflexin, and YIP1 domain families
  • 2021
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e. the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More than half of the 58 proteins identified with the 5TM architecture belong to twelve families with two or more members, with ten complete families that do not have any other homologous human proteins identified. Interestingly, more than half the proteins in the dataset function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this family in large contrast with other TM families. The three major 5TM families include the Tweety family, which are pore-forming subunits of the swelling-dependent volume regulated anion channel in astrocytes; the sidoreflexin family that act as mitochondrial amino acid transporters; and the Yip1 domain family engaged in vesicle budding and intra-Golgi transport.  About 30% of the 5TM proteins have enhanced expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumour types, indicating further investigation into the function and expression of these proteins is important. This study provides the first comprehensive analysis of proteins with 5TM providing details of the unique characteristics
  •  
11.
  • Attwood, Misty M., et al. (författare)
  • Classification of Trispanins : A Diverse Group of Proteins That Function in Membrane Synthesis and Transport Mechanisms
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • As the structure and functions of proteins are correlated, investigating groups of proteins with the same gross structure may provide important insights about their functional roles. Trispanins, proteins that contain three alpha-helical transmembrane (3TM) regions, have not been previously studied considering their transmembrane features. Our comprehensive identification and classification using bioinformatic methods describe 152 3TM proteins. These proteins are frequently involved in membrane biosynthesis and lipid biogenesis, protein trafficking, catabolic processes, and in particular signal transduction due to the large ionotropic glutamate receptor family. Proteins that localize to intracellular compartments are overrepresented in the dataset in comparison to the entire human transmembrane proteome, and nearly 45% localize specifically to the endoplasmic reticulum (ER). Furthermore, nearly 20% of the trispanins function in lipid metabolic processes and transport, which are also overrepresented. Nearly one-third of trispanins are identified as being targeted by drugs and/or being associated with diseases. A high number of 3TMs have unknown functions and based on this analysis we speculate on the functional involvement of uncharacterized trispanins in relationship to disease or important cellular activities. This first overall study of trispanins provides a unique analysis of a diverse group of membrane proteins.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Basu, J, et al. (författare)
  • Molecular and epigenetic alterations in normal and malignant myelopoiesis in human leukemia 60 (HL60) promyelocytic cell line model
  • 2023
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 11, s. 1060537-
  • Tidskriftsartikel (refereegranskat)abstract
    • In vitro cell line model systems are essential in supporting the research community due to their low cost, uniform culturing conditions, homogeneous biological resources, and easy experimental design to study the cause and effect of a gene or a molecule. Human leukemia 60 (HL60) is an in-vitro hematopoietic model system that has been used for decades to study normal myeloid differentiation and leukemia biology. Here, we show that IMDM supplemented with 20% FBS is an optimal culturing condition and induces effective myeloid differentiation compared with RPMI supplemented with 10% FBS when HL60 is induced with 1α,25-dihydroxyvitamin D3 (Vit D3) and all-trans retinoic acid (ATRA). The chromatin organization is compacted, and the repressive epigenetic mark H3K27me3 is enhanced upon HL60-mediated terminal differentiation. Differential gene expression analysis obtained from RNA sequencing in HL60 cells during myeloid differentiation showed the induction of pathways involved in epigenetic regulation, myeloid differentiation, and immune regulation. Using high-throughput transcriptomic data (GSE74246), we show the similarities (genes that did not satisfy |log2FC|>1 and FDR<0.05) and differences (FDR <0.05 and |log2FC|>1) between granulocyte-monocyte progenitor vs HL60 cells, Vit D3 induced monocytes (vMono) in HL60 cells vs primary monocytes (pMono), and HL60 cells vs leukemic blasts at the transcriptomic level. We found striking similarities in biological pathways between these comparisons, suggesting that the HL60 model system can be effectively used for studying myeloid differentiation and leukemic aberrations. The differences obtained could be attributed to the fact that the cellular programs of the leukemic cell line and primary cells are different. We validated several gene expression patterns for different comparisons with CD34+ cells derived from cord blood for myeloid differentiation and AML patients. In addition to the current knowledge, our study further reveals the significance of using HL60 cells as in vitro model system under optimal conditions to understand its potential as normal myeloid differentiation model as well as leukemic model at the molecular level.
  •  
18.
  •  
19.
  • Benfeitas, Rui, et al. (författare)
  • New challenges to study heterogeneity in cancer redox metabolism
  • 2017
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 5:JUL
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Bose, R, et al. (författare)
  • Modeling Neurological Disorders in 3D Organoids Using Human-Derived Pluripotent Stem Cells
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 640212-
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling neurological disorders is challenging because they often have both endogenous and exogenous causes. Brain organoids consist of three-dimensional (3D) self-organizing brain tissue which increasingly is being used to model various aspects of brain development and disorders, such as the generation of neurons, neuronal migration, and functional networks. These organoids have been recognized as important in vitro tools to model developmental features of the brain, including neurological disorders, which can provide insights into the molecular mechanisms involved in those disorders. In this review, we describe recent advances in the generation of two-dimensional (2D), 3D, and blood-brain barrier models that were derived from induced pluripotent stem cells (iPSCs) and we discuss their advantages and limitations in modeling diseases, as well as explore the development of a vascularized and functional 3D model of brain processes. This review also examines the applications of brain organoids for modeling major neurodegenerative diseases and neurodevelopmental disorders.
  •  
24.
  • Börgeson, Emma, et al. (författare)
  • Of mice and men: Pinpointing species differences in adipose tissue biology
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The prevalence of obesity and metabolic diseases continues to rise, which has led to an increased interest in studying adipose tissue to elucidate underlying disease mechanisms. The use of genetic mouse models has been critical for understanding the role of specific genes for adipose tissue function and the tissue's impact on other organs. However, mouse adipose tissue displays key differences to human fat, which has led, in some cases, to the emergence of some confounding concepts in the adipose field. Such differences include the depot-specific characteristics of visceral and subcutaneous fat, and divergences in thermogenic fat phenotype between the species. Adipose tissue characteristics may therefore not always be directly compared between species, which is important to consider when setting up new studies or interpreting results. This mini review outlines our current knowledge about the cell biological differences between human and mouse adipocytes and fat depots, highlighting some examples where inadequate knowledge of species-specific differences can lead to confounding results, and presenting plausible anatomic explanations that may underlie the differences. The article thus provides critical insights and guidance for researchers working primarily with only human or mouse fat tissue, and may contribute to new ideas or concepts in the important and evolving field of adipose biology.
  •  
25.
  • Ceder, Mikaela M., et al. (författare)
  • CG4928 is vital for renal function in fruit flies and membrane potential in cells : A first in-depth characterization of the putative Solute Carrier UNC93A
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The number of transporter proteins that are not fully characterized is immense. Here, we used Drosophila melanogaster and human cell lines to perform a first in-depth characterization of CG4928, an ortholog to the human UNC93A, of which little is known. Solute carriers regulate and maintain biochemical pathways important for the body, and malfunctioning transport is associated with multiple diseases. Based on phylogenetic analysis, CG4928 is closely related to human UNC93A and has a secondary and a tertiary protein structure and folding similar to major facilitator superfamily transporters. Ubiquitous knockdown of CG4928 causes flies to have a reduced secretion rate from the Malpighian tubules; altering potassium content in the body and in the Malpighian tubules, homologous to the renal system; and results in the development of edema. The edema could be rescued by using amiloride, a common diuretic, and by maintaining the flies on ion-free diets. CG4928-overexpressing cells did not facilitate the transport of sugars and amino acids; however, proximity ligation assay revealed that CG4928 co-localized with TASK(1) channels. Overexpression of CG4928 resulted in induced apoptosis and cytotoxicity, which could be restored when cells were kept in high-sodium media. Furthermore, the basal membrane potential was observed to be disrupted. Taken together, the results indicate that CG4928 is of importance for generating the cellular membrane potential by an unknown manner. However, we speculate that it most likely acts as a regulator or transporter of potassium flows over the membrane.
  •  
26.
  • Ceder, Mikaela M., et al. (författare)
  • Glucose Availability Alters Gene and Protein Expression of Several Newly Classified and Putative Solute Carriers in Mice Cortex Cell Culture and D. melanogaster
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Many newly identified solute carriers (SLCs) and putative transporters have the possibility to be intricately involved in glucose metabolism. Here we show that many transporters of this type display a high degree of regulation at both mRNA and protein level following no or low glucose availability in mouse cortex cultures. We show that this is also the case in Drosophila melanogaster subjected to starvation or diets with different sugar content. Interestingly, re-introduction of glucose to media, or refeeding flies, normalized the gene expression of a number of the targets, indicating a fast and highly dynamic control. Our findings demonstrate high conservation of these transporters and how dependent both cell cultures and organisms are on gene and protein regulation during metabolic fluctuations. Several transporter genes were regulated simultaneously maybe to initiate alternative metabolic pathways as a response to low glucose levels, both in the cell cultures and in D. melanogaster. Our results display that newly identified SLCs of Major Facilitator Superfamily type, as well as the putative transporters included in our study, are regulated by glucose availability and could be involved in several cellular aspects dependent of glucose and/or its metabolites. Recently, a correlation between dysregulation of glucose in the central nervous system and numerous diseases such as obesity, type 2 diabetes mellitus as well as neurological disease such as Alzheimer’s and Parkinson’s diseases indicate a complex regulation and fine tuning of glucose levels in the brain. The fact that almost one third of transporters and transporter-related proteins remain orphans with unknown or contradictive substrate profile, location and function, pinpoint the need for further research about them to fully understand their mechanistic role and their impact on cellular metabolism.
  •  
27.
  •  
28.
  •  
29.
  • Corno, Cristina, et al. (författare)
  • The deubiquitinase USP8 regulates ovarian cancer cell response to cisplatin by suppressing apoptosis
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : FRONTIERS MEDIA SA. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of therapeutic approaches to improve response to platinum-based therapies is an urgent need for ovarian carcinoma. Deubiquitinases are a large family of ubiquitin proteases implicated in a variety of cellular functions and may contribute to tumor aggressive features through regulation of processes such as proliferation and cell death. Among the subfamily of ubiquitin-specific peptidases, USP8 appears to be involved in modulation of cancer cell survival by still poorly understood mechanisms. Thus, we used ovarian carcinoma cells of different histotypes, including cisplatin-resistant variants with increased survival features to evaluate the efficacy of molecular targeting of USP8 as a strategy to overcome drug resistance/modulate cisplatin response. We performed biochemical analysis of USP8 activity in pairs of cisplatin-sensitive and -resistant cells and found increased USP8 activity in resistant cells. Silencing of USP8 resulted in decreased activation of receptor tyrosine kinases and increased sensitivity to cisplatin in IGROV-1/Pt1 resistant cells as shown by colony forming assay. Increased cisplatin sensitivity was associated with enhanced cisplatin-induced caspase 3/7 activation and apoptosis, a phenotype also observed in cisplatin sensitive cells. Increased apoptosis was linked to FLIPL decrease and cisplatin induction of caspase 3 in IGROV-1/Pt1 cells, cisplatin-induced claspin and survivin down-regulation in IGROV-1 cells, thereby showing a decrease of anti-apoptotic proteins. Immunohistochemical staining on 65 clinical specimens from advanced stage ovarian carcinoma indicated that 40% of tumors were USP8 positive suggesting that USP8 is an independent prognostic factor for adverse outcome when considering progression free survival as a clinical end-point. Taken together, our results support that USP8 may be of diagnostic value and may provide a therapeutic target to improve the efficacy of platinum-based therapy in ovarian carcinoma.
  •  
30.
  • Crescitelli, Rossella, 1985, et al. (författare)
  • Extracellular vesicle DNA from human melanoma tissues contains cancer-specific mutations
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid biopsies are promising tools for early diagnosis and residual disease monitoring in patients with cancer, and circulating tumor DNA isolated from plasma has been extensively studied as it has been shown to contain tumor-specific mutations. Extracellular vesicles (EVs) present in tumor tissues carry tumor-derived molecules such as proteins and nucleic acids, and thus EVs can potentially represent a source of cancer-specific DNA. Here we identified the presence of tumor-specific DNA mutations in EVs isolated from six human melanoma metastatic tissues and compared the results with tumor tissue DNA and plasma DNA. Tumor tissue EVs were isolated using enzymatic treatment followed by ultracentrifugation and iodixanol density cushion isolation. A panel of 34 melanoma-related genes was investigated using ultra-sensitive sequencing (SiMSen-seq). We detected mutations in six genes in the EVs (BRAF, NRAS, CDKN2A, STK19, PPP6C, and RAC), and at least one mutation was detected in all melanoma EV samples. Interestingly, the mutant allele frequency was higher in DNA isolated from tumor-derived EVs compared to total DNA extracted directly from plasma DNA, supporting the potential role of tumor EVs as future biomarkers in melanoma.
  •  
31.
  • Das, Y, et al. (författare)
  • Peroxisomal Multifunctional Protein 2 Deficiency Perturbs Lipid Homeostasis in the Retina and Causes Visual Dysfunction in Mice
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 632930-
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients lacking multifunctional protein 2 (MFP2), the central enzyme of the peroxisomal β-oxidation pathway, develop retinopathy. This pathway is involved in the metabolism of very long chain (VLCFAs) and polyunsaturated (PUFAs) fatty acids, which are enriched in the photoreceptor outer segments (POS). The molecular mechanisms underlying the retinopathy remain, however, elusive. Here, we report that mice with MFP2 inactivation display decreased retinal function already at the age of 3 weeks, which is accompanied by a profound shortening of the photoreceptor outer and inner segments, but with preserved photoreceptor ultrastructure. Furthermore, MFP2 deficient retinas exhibit severe changes in gene expression with downregulation of genes involved in the phototransduction pathway and upregulation of inflammation related genes. Lipid profiling of the mutant retinas revealed a profound reduction of DHA-containing phospholipids. This was likely due to a hampered systemic supply and retinal traffic of this PUFA, although we cannot exclude that the local defect of peroxisomal β-oxidation contributes to this DHA decrease. Moreover, very long chain PUFAs were also reduced, with the exception of those containing ≥ 34 carbons that accumulated. The latter suggests that there is an uncontrollable elongation of retinal PUFAs. In conclusion, our data reveal that intact peroxisomal β-oxidation is indispensable for retinal integrity, most likely by maintaining PUFA homeostasis.
  •  
32.
  •  
33.
  • Dave, Z, et al. (författare)
  • Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells
  • 2022
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 10, s. 838871-
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
  •  
34.
  • Davies, DM, et al. (författare)
  • Cellular enlargement - A new hallmark of aging?
  • 2022
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 10, s. 1036602-
  • Tidskriftsartikel (refereegranskat)abstract
    • Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
  •  
35.
  • Delbaere, S., et al. (författare)
  • b3galt6 Knock-Out Zebrafish Recapitulate beta 3GalT6-Deficiency Disorders in Human and Reveal a Trisaccharide Proteoglycan Linkage Region
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteoglycans are structurally and functionally diverse biomacromolecules found abundantly on cell membranes and in the extracellular matrix. They consist of a core protein linked to glycosaminoglycan chains via a tetrasaccharide linkage region. Here, we show that CRISPR/Cas9-mediated b3galt6 knock-out zebrafish, lacking galactosyltransferase II, which adds the third sugar in the linkage region, largely recapitulate the phenotypic abnormalities seen in human beta 3GalT6-deficiency disorders. These comprise craniofacial dysmorphism, generalized skeletal dysplasia, skin involvement and indications for muscle hypotonia. In-depth TEM analysis revealed disturbed collagen fibril organization as the most consistent ultrastructural characteristic throughout different affected tissues. Strikingly, despite a strong reduction in glycosaminoglycan content, as demonstrated by anion-exchange HPLC, subsequent LC-MS/MS analysis revealed a small amount of proteoglycans containing a unique linkage region consisting of only three sugars. This implies that formation of glycosaminoglycans with an immature linkage region is possible in a pathogenic context. Our study, therefore unveils a novel rescue mechanism for proteoglycan production in the absence of galactosyltransferase II, hereby opening new avenues for therapeutic intervention.
  •  
36.
  •  
37.
  •  
38.
  • Dentoni, G, et al. (författare)
  • The Potential of Small Molecules to Modulate the Mitochondria-Endoplasmic Reticulum Interplay in Alzheimer's Disease
  • 2022
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 10, s. 920228-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid β-peptide (Aβ) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria–endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.
  •  
39.
  • Dong, Zhen, et al. (författare)
  • Mitoepigenetics and Its Emerging Roles in Cancer
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • In human beings, there is a similar to 16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Posttranslational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
  •  
40.
  • Dumas, Sylvie, et al. (författare)
  • Developmental Co-expression of Vglut2 and Nurr1 in a Mes-Di-Encephalic Continuum Preceeds Dopamine and Glutamate Neuron Specification
  • 2019
  • Ingår i: Frontiers in Cell and Developmental Biology. - : FRONTIERS MEDIA SA. - 2296-634X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Midbrain dopamine (DA) neurons exist as several subtypes and are found in a heterogeneous environment including GABAergic and glutamatergic neurons as well as various types of co-releasing neurons. Developmental programs underlying this heterogeneity have remained elusive. In this study, combinatorial mRNA analysis was performed at stages when neuronal phenotypes are first specified. Vesicular transporters for dopamine and other monoamines (VMAT2), GABA (VIAAT), and glutamate (VGLUT2) were assessed by systematically applying fluorescent in situ hybridization through the mes-di-encephalon of the mouse embryo at embryonal days (E) 9.5-14.5. The results show that early differentiating dopamine neurons express the gene encoding VGLUT2 before onset of any dopaminergic markers. Prior to its down-regulation in maturing dopamine neurons, Vglut2 mRNA co-localizes extensively with Tyrosine hydroxylase (Th) and Nurr1, commonly used as markers for DA neurons. Further, Vglut2 and Nurr1 mRNAs are shown to overlap substantially in diencephalic neurons that maintain a glutamatergic phenotype. The results suggest that Vglut2/Nurr1-double positive cells give rise both to dopaminergic and glutamatergic neurons within the mes-di-encephalic area. Finally, analysis of markers representing subtypes of dopamine neurons, including the newly described NeuroD6 subtype, shows that certain subtype specifications arise early. Histological findings are outlined in the context of neuroanatomical concepts and the prosomeric model of brain development. The study contributes to the current decoding of the recently discovered heterogeneity among neurons residing along the cephalic flexure.
  •  
41.
  • Estupinan, HY, et al. (författare)
  • Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 630942-
  • Tidskriftsartikel (refereegranskat)abstract
    • The cytoplasmic protein-tyrosine kinase BTK plays an essential role for differentiation and survival of B-lineage cells and, hence, represents a suitable drug target. The number of BTK inhibitors (BTKis) in the clinic has increased considerably and currently amounts to at least 22. First-in-class was ibrutinib, an irreversible binder forming a covalent bond to a cysteine in the catalytic region of the kinase, for which we have identified 228 active trials listed atClinicalTrials.gov. Next-generation inhibitors, acalabrutinib and zanubrutinib, are approved both in the United States and in Europe, and zanubrutinib also in China, while tirabrutinib is currently only registered in Japan. In most cases, these compounds have been used for the treatment of B-lymphocyte tumors. However, an increasing number of trials instead addresses autoimmunity and inflammation in multiple sclerosis, rheumatoid arthritis, pemphigus and systemic lupus erythematosus with the use of either irreversibly binding inhibitors, e.g., evobrutinib and tolebrutinib, or reversibly binding inhibitors, like fenebrutinib. Adverse effects (AEs) have predominantly implicated inhibition of other kinases with a BTKi-binding cysteine in their catalytic domain. Analysis of the reported AEs suggests that ibrutinib-associated atrial fibrillation is caused by binding to ERBB2/HER2 and ERBB4/HER4. However, the binding pattern of BTKis to various additional kinases does not correlate with the common assumption that skin manifestations and diarrhoeas are off-target effects related to EGF receptor inhibition. Moreover, dermatological toxicities, diarrhoea, bleedings and invasive fungal infections often develop early after BTKi treatment initiation and subsequently subside. Conversely, cardiovascular AEs, like hypertension and various forms of heart disease, often persist.
  •  
42.
  • Fang, W. C., et al. (författare)
  • Metabolomics in aging research: aging markers from organs
  • 2023
  • Ingår i: Frontiers in Cell and Developmental Biology. - 2296-634X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.
  •  
43.
  • Felce, JH, et al. (författare)
  • Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 8, s. 608484-
  • Tidskriftsartikel (refereegranskat)abstract
    • A central process in immunity is the activation of T cells through interaction of T cell receptors (TCRs) with agonistic peptide-major histocompatibility complexes (pMHC) on the surface of antigen presenting cells (APCs). TCR-pMHC binding triggers the formation of an extensive contact between the two cells termed the immunological synapse, which acts as a platform for integration of multiple signals determining cellular outcomes, including those from multiple co-stimulatory/inhibitory receptors. Contributors to this include a number of chemokine receptors, notably CXC-chemokine receptor 4 (CXCR4), and other members of the G protein-coupled receptor (GPCR) family. Although best characterized as mediators of ligand-dependent chemotaxis, some chemokine receptors are also recruited to the synapse and contribute to signaling in the absence of ligation. How these and other GPCRs integrate within the dynamic structure of the synapse is unknown, as is how their normally migratory Gαi-coupled signaling is terminated upon recruitment. Here, we report the spatiotemporal organization of several GPCRs, focusing on CXCR4, and the G protein Gαi2 within the synapse of primary human CD4+ T cells on supported lipid bilayers, using standard- and super-resolution fluorescence microscopy. We find that CXCR4 undergoes orchestrated phases of reorganization, culminating in recruitment to the TCR-enriched center. This appears to be dependent on CXCR4 ubiquitination, and does not involve stable interactions with TCR microclusters, as viewed at the nanoscale. Disruption of this process by mutation impairs CXCR4 contributions to cellular activation. Gαi2 undergoes active exclusion from the synapse, partitioning from centrally-accumulated CXCR4. Using a CRISPR-Cas9 knockout screen, we identify several diverse GPCRs with contributions to T cell activation, most significantly the sphingosine-1-phosphate receptor S1PR1, and the oxysterol receptor GPR183. These, and other GPCRs, undergo organization similar to CXCR4; including initial exclusion, centripetal transport, and lack of receptor-TCR interactions. These constitute the first observations of GPCR dynamics within the synapse, and give insights into how these receptors may contribute to T cell activation. The observation of broad GPCR contributions to T cell activation also opens the possibility that modulating GPCR expression in response to cell status or environment may directly regulate responsiveness to pMHC.
  •  
44.
  • Fryklund, Claes, et al. (författare)
  • Expansion of the Inguinal Adipose Tissue Depot Correlates With Systemic Insulin Resistance in C57BL/6J Mice
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications. In the present study, we have characterized adipose plasticity, at both the cellular and tissue level, by examining the temporal development of systemic insulin resistance and adiposity in response to HFD-feeding for 4, 8, and 12 weeks (4w, 8w, and 12w). Within the same time frame, we examined systemic metabolic flexibility and adipose plasticity when switching from HFD- to chow-diet during the last 2 weeks of diet intervention (referred to as the reverse (REV) group: 4wREV (2w HFD+2w chow), 8wREV (6w HFD+2w chow), 12wREV (10w HFD+2w chow)). In response to HFD-feeding over time, the 12w group had impaired systemic insulin sensitivity compared to both the 4w and 8w groups, accompanied by an increase in hypertrophic inguinal adipocytes and liver triglycerides. After reversing from HFD- to chow-feeding, most parameters were completely restored to chow control levels for 4wREV and 8wREV groups. In contrast, the 12wREV group had a significantly increased number of hypertrophic adipocytes, liver triglycerides accumulation, and impaired systemic insulin sensitivity compared to chow-fed mice. Further, image analysis at the single-cell level revealed a cell-size dependent organization of actin filaments for all feeding conditions. Indeed, the impaired adipocyte size plasticity in the 12wREV group was accompanied by increased actin filamentation and reduced insulin-stimulated glucose uptake compared with chow-fed mice. In summary, these results demonstrate that the C57BL/6J HFD-feeding model has a large capacity to restore adipocyte cell size and systemic insulin sensitivity, and that a metabolic tipping point occurs between 8 and 12w of HFD-feeding where this plasticity deteriorates. We believe these findings provide substantial understanding of C57BL/6J mice as an obesity model, and that an increased pool of hypertrophic ING adipocytes could contribute to aggravated insulin resistance.
  •  
45.
  • Fujimoto, Toyoshi, et al. (författare)
  • Interleaflet Coupling, Pinning, and Leaflet Asymmetry : Major Players in Plasma Membrane Nanodomain Formation
  • 2017
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
  •  
46.
  • Gaspar, Ricardo, et al. (författare)
  • Transient Lipid-Protein Structures and Selective Ganglioside Uptake During α-Synuclein-Lipid Co-aggregation
  • 2021
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • α-Synuclein is a membrane-interacting protein involved in Parkinson’s disease. Here we have investigated the co-association of α-synuclein and lipids from ganglioside-containing model membranes. Our study relies on the reported importance of ganglioside lipids, which are found in high amounts in neurons and exosomes, on cell-to-cell prion-like transmission of misfolded α-synuclein. Samples taken along various stages of the aggregation process were imaged using cryogenic transmission electron microscopy, and the composition of samples corresponding to the final state analyzed using NMR spectroscopy. The combined data shows that α-synuclein co-assembles with lipids from the ganglioside (GM1)-containing model membranes. The lipid-protein samples observed during the aggregation process contain non-vesicular objects not present at the final stage, thus capturing the co-existence of species under non-equilibrium conditions. A range of different lipid-protein co-assemblies are observed during the time course of the reaction and some of these appear to be transient assemblies that evolve into other co-aggregates over time. At the end of the aggregation reaction, the samples become more homogeneous, showing thin fibrillar structures heavily decorated with small vesicles. From the NMR analysis, we conclude that the ratio of GM1 to phosphatidyl choline (PC) in the supernatant of the co-aggregated samples is significantly reduced compared to the GM1/PC ratio of the lipid dispersion from which these samples were derived. Taken together, this indicates a selective uptake of GM1 into the fibrillar aggregates and removal of GM1-rich objects from the solution.
  •  
47.
  • Gesper, A., et al. (författare)
  • Variations in Plasma Membrane Topography Can Explain Heterogenous Diffusion Coefficients Obtained by Fluorescence Correlation Spectroscopy
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescence correlation spectroscopy (FCS) is frequently used to study diffusion in cell membranes, primarily the plasma membrane. The diffusion coefficients reported in the plasma membrane of the same cell type and even within single cells typically display a large spread. We have investigated whether this spread can be explained by variations in membrane topography throughout the cell surface, that changes the amount of membrane in the FCS focal volume at different locations. Using FCS, we found that diffusion of the membrane dye DiI in the apical plasma membrane was consistently faster above the nucleus than above the cytoplasm. Using live cell scanning ion conductance microscopy (SICM) to obtain a topography map of the cell surface, we demonstrate that cell surface roughness is unevenly distributed with the plasma membrane above the nucleus being the smoothest, suggesting that the difference in diffusion observed in FCS is related to membrane topography. FCS modeled on simulated diffusion in cell surfaces obtained by SICM was consistent with the FCS data from live cells and demonstrated that topography variations can cause the appearance of anomalous diffusion in FCS measurements. Furthermore, we found that variations in the amount of the membrane marker DiD, a proxy for the membrane, but not the transmembrane protein TCRζ or the lipid-anchored protein Lck, in the FCS focal volume were related to variations in diffusion times at different positions in the plasma membrane. This relationship was seen at different positions both at the apical cell and basal cell sides. We conclude that it is crucial to consider variations in topography in the interpretation of FCS results from membranes. © Copyright © 2020 Gesper, Wennmalm, Hagemann, Eriksson, Happel and Parmryd.
  •  
48.
  • Guendel, B, et al. (författare)
  • Pancreatic Ductal Adenocarcinoma: Preclinical in vitro and ex vivo Models
  • 2021
  • Ingår i: Frontiers in cell and developmental biology. - : Frontiers Media SA. - 2296-634X. ; 9, s. 741162-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.
  •  
49.
  • Guo, Jinan, et al. (författare)
  • Establishing a Urine-Based Biomarker Assay for Prostate Cancer Risk Stratification
  • 2020
  • Ingår i: Frontiers in Cell and Developmental Biology. - Swiss : Frontiers Media S.A.. - 2296-634X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major features of prostate cancer (PCa) is its heterogeneity, which often leads to uncertainty in cancer diagnostics and unnecessary biopsies as well as overtreatment of the disease. Novel non-invasive tests using multiple biomarkers that can identify clinically high-risk cancer patients for immediate treatment and monitor patients with low-risk cancer for active surveillance are urgently needed to improve treatment decision and cancer management. In this study, we identified 14 promising biomarkers associated with PCa and tested the performance of these biomarkers on tissue specimens and pre-biopsy urinary sediments. These biomarkers showed differential gene expression in higher- and lower-risk PCa. The 14-Gene Panel urine test (PMP22, GOLM1, LMTK2, EZH2, GSTP1, PCA3, VEGFA, CST3, PTEN, PIP5K1A, CDK1, TMPRSS2, ANXA3, and CCND1) was assessed in two independent prospective and retrospective urine study cohorts and showed high diagnostic accuracy to identify higher-risk PCa patients with the need for treatment and lower-risk patients for surveillance. The AUC was 0.897 (95% CI 0.939–0.855) in the prospective cohort (n = 202), and AUC was 0.899 (95% CI 0.964–0.834) in the retrospective cohort (n = 97). In contrast, serum PSA and Gleason score had much lower accuracy in the same 202 patient cohorts [AUC was 0.821 (95% CI 0.879–0.763) for PSA and 0.860 (95% CI 0.910–0.810) for Gleason score]. In addition, the 14-Gene Panel was more accurate at risk stratification in a subgroup of patients with Gleason scores 6 and 7 in the prospective cohort (n = 132) with AUC of 0.923 (95% CI 0.968–0.878) than PSA [AUC of 0.773 (95% CI 0.852–0.794)] and Gleason score [AUC of 0.776 (95% CI 0.854–0.698)]. Furthermore, the 14-Gene Panel was found to be able to accurately distinguish PCa from benign prostate with AUC of 0.854 (95% CI 0.892–0.816) in a prospective urine study cohort (n = 393), while PSA had lower accuracy with AUC of 0.652 (95% CI 0.706–0.598). Taken together, the 14-Gene Panel urine test represents a promising non-invasive tool for detection of higher-risk PCa to aid treatment decision and lower-risk PCa for active surveillance.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 136
Typ av publikation
tidskriftsartikel (117)
forskningsöversikt (19)
Typ av innehåll
refereegranskat (125)
övrigt vetenskapligt/konstnärligt (11)
Författare/redaktör
Zhivotovsky, B (3)
Fredriksson, Robert (3)
Sezgin, E (3)
Bryja, V (3)
Persson, Jenny L., P ... (3)
Behal, M (3)
visa fler...
Dave, Z (3)
Krejci, P (3)
Rask-Andersen, Helge (2)
Bansal, V. (2)
Lindholm, Dan (2)
Das, A. (2)
Sinha, I (2)
Kroemer, G (2)
Liu, S. K. (2)
Lewandowski, SA (2)
Liu, Beidong, 1972 (2)
Schiöth, Helgi B. (2)
Kaldis, Philipp (2)
Parmryd, Ingela (2)
Pospisilova, S (2)
Aggarwal, Tanya (2)
Patil, Sourabh (2)
Arenas, E (2)
Saha, S (2)
Lundmark, Richard (2)
Attwood, Misty M. (2)
Back, M (2)
Jovine, L (2)
Kepp, O (2)
Mohanty, S (2)
Eggeling, C (2)
Ankarcrona, M (2)
Larson, Göran, 1953 (2)
Heery, David M. (2)
Mongan, Nigel P. (2)
Böiers, Charlotta (2)
Baker, SM (2)
Kotaskova, J. (2)
Bonn, S (2)
Khalil, A (2)
Basu, J (2)
Madhulika, S (2)
Murmu, KC (2)
Samal, P (2)
Mahapatra, S (2)
Prasad, P (2)
Schmid, B (2)
Haass, C. (2)
Noborn, Fredrik (2)
visa färre...
Lärosäte
Karolinska Institutet (72)
Lunds universitet (22)
Uppsala universitet (17)
Göteborgs universitet (12)
Umeå universitet (9)
Linköpings universitet (7)
visa fler...
Kungliga Tekniska Högskolan (4)
Chalmers tekniska högskola (3)
Stockholms universitet (2)
Malmö universitet (2)
Örebro universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (136)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (24)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy