SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2522 5812 "

Search: L773:2522 5812

  • Result 1-50 of 73
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • An, Y. A., et al. (author)
  • Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity
  • 2019
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:12, s. 1243-57
  • Journal article (peer-reviewed)abstract
    • Mitochondrial function in white adipose tissue (WAT) is an important yet understudied aspect of adipocyte biology. Here, we report a role for amyloid precursor protein (APP) in compromising WAT mitochondrial function through a high-fat diet (HFD)-induced, unconventional mis-localization to mitochondria that further promotes obesity. In humans and mice, obese conditions induce substantial APP production in WAT and APP enrichment in mitochondria. Mechanistically, HFD-induced dysregulation of signal recognition particle subunit 54c is responsible for the mis-targeting of APP to adipocyte mitochondria. Mis-localized APP blocks the protein import machinery, leading to mitochondrial dysfunction in WAT. Mice overexpressing adipocyte-specific and mitochondria-targeted APP display increased body mass and reduced insulin sensitivity, along with dysfunctional WAT, owing to a dramatic hypertrophic program in adipocytes. Elimination of adipocyte APP rescues HFD-impaired mitochondrial function with considerable protection from weight gain and systemic metabolic deficiency. Our data highlight an important role for APP in modulating WAT mitochondrial function and obesity-associated metabolic dysfunction.
  •  
2.
  • Aouadi, M, et al. (author)
  • Career pathways, part 2
  • 2020
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:8, s. 651-652
  • Journal article (peer-reviewed)
  •  
3.
  • Baboota, Ritesh, et al. (author)
  • BMP4 and Gremlin 1 regulate hepatic cell senescence during clinical progression of NAFLD/NASH
  • 2022
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:8, s. 1007-21
  • Journal article (peer-reviewed)abstract
    • The role of hepatic cell senescence in human non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is not well understood. To examine this, we performed liver biopsies and extensive characterization of 58 individuals with or without NAFLD/NASH. Here, we show that hepatic cell senescence is strongly related to NAFLD/NASH severity, and machine learning analysis identified senescence markers, the BMP4 inhibitor Gremlin 1 in liver and visceral fat, and the amount of visceral adipose tissue as strong predictors. Studies in liver cell spheroids made from human stellate and hepatocyte cells show BMP4 to be anti-senescent, anti-steatotic, anti-inflammatory and anti-fibrotic, whereas Gremlin 1, which is particularly highly expressed in visceral fat in humans, is pro-senescent and antagonistic to BMP4. Both senescence and anti-senescence factors target the YAP/TAZ pathway, making this a likely regulator of senescence and its effects. We conclude that senescence is an important driver of human NAFLD/NASH and that BMP4 and Gremlin 1 are novel therapeutic targets. Baboota et al. investigate senescence as a driver of human NAFLD/NASH and show the roles of BMP4 and its antagonist Gremlin 1 as anti-senescent and pro-senescent molecules, respectively.
  •  
4.
  •  
5.
  •  
6.
  • Butt, Linus, et al. (author)
  • A molecular mechanism explaining albuminuria in kidney disease
  • 2020
  • In: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 2:5, s. 461-474
  • Journal article (peer-reviewed)abstract
    • Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.
  •  
7.
  • Charbord, Jeremie, et al. (author)
  • In vivo screen identifies a SIK inhibitor that induces beta cell proliferation through a transient UPR
  • 2021
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 3:5, s. 682-700
  • Journal article (peer-reviewed)abstract
    • It is known that beta cell proliferation expands the beta cell mass during development and under certain hyperglycemic conditions in the adult, a process that may be used for beta cell regeneration in diabetes. Here, through a new high-throughput screen using a luminescence ubiquitination-based cell cycle indicator (LUCCI) in zebrafish, we identify HG-9-91-01 as a driver of proliferation and confirm this effect in mouse and human beta cells. HG-9-91-01 is an inhibitor of salt-inducible kinases (SIKs), and overexpression of Sik1 specifically in beta cells blocks the effect of HG-9-91-01 on beta cell proliferation. Single-cell transcriptomic analyses of mouse beta cells demonstrate that HG-9-91-01 induces a wave of activating transcription factor (ATF)6-dependent unfolded protein response (UPR) before cell cycle entry. Importantly, the UPR wave is not associated with an increase in insulin expression. Additional mechanistic studies indicate that HG-9-91-01 induces multiple signalling effectors downstream of SIK inhibition, including CRTC1, CRTC2, ATF6, IRE1 and mTOR, which integrate to collectively drive beta cell proliferation. A high-throughput chemical screen identifies the salt-inducible kinase inhibitor HG-9-91-01 as a driver of beta cell proliferation, acting through an ATF6-dependent unfolded protein response.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Coral, Daniel E, et al. (author)
  • A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes
  • 2023
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 5:2, s. 237-247
  • Journal article (peer-reviewed)abstract
    • Obesity and type 2 diabetes are causally related, yet there is considerable heterogeneity in the consequences of both conditions and the mechanisms of action are poorly defined. Here we show a genetic-driven approach defining two obesity profiles that convey highly concordant and discordant diabetogenic effects. We annotate and then compare association signals for these profiles across clinical and molecular phenotypic layers. Key differences are identified in a wide range of traits, including cardiovascular mortality, fat distribution, liver metabolism, blood pressure, specific lipid fractions and blood levels of proteins involved in extracellular matrix remodelling. We find marginal differences in abundance of Bacteroidetes and Firmicutes bacteria in the gut. Instrumental analyses reveal prominent causal roles for waist-to-hip ratio, blood pressure and cholesterol content of high-density lipoprotein particles in the development of diabetes in obesity. We prioritize 17 genes from the discordant signature that convey protection against type 2 diabetes in obesity, which may represent logical targets for precision medicine approaches.
  •  
13.
  •  
14.
  • de Jong, Jasper M. A., et al. (author)
  • Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice
  • 2019
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:8, s. 830-843
  • Journal article (peer-reviewed)abstract
    • Human and rodent brown adipose tissues (BAT) appear morphologically and molecularly different. Here we compare human BAT with both classical brown and brite/beige adipose tissues of 'physiologically humanized' mice: middle-aged mice living under conditions approaching human thermal and nutritional conditions, that is, prolonged exposure to thermoneutral temperature (approximately 30 degrees C) and to an energy-rich (high-fat, high-sugar) diet. We find that the morphological, cellular and molecular characteristics (both marker and adipose-selective gene expression) of classical brown fat, but not of brite/beige fat, of these physiologically humanized mice are notably similar to human BAT. We also demonstrate, both in silico and experimentally, that in physiologically humanized mice only classical BAT possesses a high thermogenic potential. These observations suggest that classical rodent BAT is the tissue of choice for translational studies aimed at recruiting human BAT to counteract the development of obesity and its comorbidities.
  •  
15.
  • Divakaruni, Ajit S., et al. (author)
  • A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements
  • 2022
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:8, s. 978-994
  • Journal article (peer-reviewed)abstract
    • Measurement of oxygen consumption is a powerful and uniquely informative experimental technique. It can help identify mitochondrial mechanisms of action following pharmacologic and genetic interventions, and characterize energy metabolism in physiology and disease. The conceptual and practical benefits of respirometry have made it a frontline technique to understand how mitochondrial function can interface with—and in some cases control—cell physiology. Nonetheless, an appreciation of the complexity and challenges involved with such measurements is required to avoid common experimental and analytical pitfalls. Here we provide a practical guide to oxygen consumption measurements covering the selection of experimental models and instrumentation, as well as recommendations for the collection, interpretation and normalization of data. These guidelines are provided with the intention of aiding experimental design and enhancing the overall reputability, transparency and reliability of oxygen consumption measurements.
  •  
16.
  • Dwibedi, Chinmay, 1987, et al. (author)
  • Randomized open-label trial of semaglutide and dapagliflozin in patients with type 2 diabetes of different pathophysiology
  • 2024
  • In: Nature Metabolism. - 2522-5812. ; 6:1, s. 50-60
  • Journal article (peer-reviewed)abstract
    • The limited understanding of the heterogeneity in the treatment response to antidiabetic drugs contributes to metabolic deterioration and cardiovascular complications 1,2, stressing the need for more personalized treatment 1. Although recent attempts have been made to classify diabetes into subgroups, the utility of such stratification in predicting treatment response is unknown 3. We enrolled participants with type 2 diabetes (n = 239, 74 women and 165 men) and features of severe insulin-deficient diabetes (SIDD) or severe insulin-resistant diabetes (SIRD). Participants were randomly assigned to treatment with the glucagon-like peptide 1 receptor agonist semaglutide or the sodium–glucose cotransporter 2 inhibitor dapagliflozin for 6 months (open label). The primary endpoint was the change in glycated haemoglobin (HbA1c). Semaglutide induced a larger reduction in HbA1c levels than dapagliflozin (mean difference, 8.2 mmol mol−1; 95% confidence interval, −10.0 to −6.3 mmol mol−1), with a pronounced effect in those with SIDD. No difference in adverse events was observed between participants with SIDD and those with SIRD. Analysis of secondary endpoints showed greater reductions in fasting and postprandial glucose concentrations in response to semaglutide in participants with SIDD than in those with SIRD and a more pronounced effect on postprandial glucose by dapagliflozin in participants with SIDD than in those with SIRD. However, no significant interaction was found between drug assignment and the SIDD or SIRD subgroup. In contrast, continuous measures of body mass index, blood pressure, insulin secretion and insulin resistance were useful in identifying those likely to have the largest improvements in glycaemic control and cardiovascular risk factors by adding semaglutide or dapagliflozin. Thus, systematic evaluation of continuous pathophysiological variables can guide the prediction of the treatment response to these drugs and provide more information than stratified subgroups (NCT04451837).
  •  
17.
  • Folkersen, Lasse, et al. (author)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Journal article (peer-reviewed)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
18.
  • Gloyn, A. L., et al. (author)
  • Every islet matters: improving the impact of human islet research
  • 2022
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4, s. 970-977
  • Journal article (peer-reviewed)abstract
    • The authors of this Perspective summarize the state of human islet research and compare available islet procurement methods, proposing strategies to increase collaboration and standardization to accelerate discoveries on diabetes. Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.
  •  
19.
  •  
20.
  • Govaere, Olivier, et al. (author)
  • A proteo-transcriptomic map of non-alcoholic fatty liver disease signatures
  • 2023
  • In: Nature Metabolism. - : NATURE PORTFOLIO. - 2522-5812. ; 5:4, s. 572-578
  • Journal article (peer-reviewed)abstract
    • Govaere et al. integrate circulating protein data from more than 300 patients with non-alcoholic fatty liver disease (NAFLD) with transcriptomics and develop a non-invasive diagnostics tool to identify patients with at-risk NAFLD based on body mass index, type 2 diabetes status and four circulating proteins. Non-alcoholic fatty liver disease (NAFLD) is a common, progressive liver disease strongly associated with the metabolic syndrome. It is unclear how progression of NAFLD towards cirrhosis translates into systematic changes in circulating proteins. Here, we provide a detailed proteo-transcriptomic map of steatohepatitis and fibrosis during progressive NAFLD. In this multicentre proteomic study, we characterize 4,730 circulating proteins in 306 patients with histologically characterized NAFLD and integrate this with transcriptomic analysis in paired liver tissue. We identify circulating proteomic signatures for active steatohepatitis and advanced fibrosis, and correlate these with hepatic transcriptomics to develop a proteo-transcriptomic signature of 31 markers. Deconvolution of this signature by single-cell RNA sequencing reveals the hepatic cell types likely to contribute to proteomic changes with disease progression. As an exemplar of use as a non-invasive diagnostic, logistic regression establishes a composite model comprising four proteins (ADAMTSL2, AKR1B10, CFHR4 and TREM2), body mass index and type 2 diabetes mellitus status, to identify at-risk steatohepatitis.
  •  
21.
  • Grandoch, Maria, et al. (author)
  • 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue
  • 2019
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:5, s. 546-559
  • Journal article (peer-reviewed)abstract
    • Therapeutic increase in brown adipose tissue (BAT) thermogenesis is of great interest, as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, that is synthesized by HA synthases (HAS1, HAS2, and HAS3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here we show that inhibition of HA synthesis by 4-MU or genetic deletion of Has2 and Has3 improves the thermogenic capacity of BAT, reduces body-weight gain, and improves glucose homeostasis independently of adrenergic stimulation in mice on a diabetogenic diet. In this context, we validated a novel magnetic resonce T2 mapping approach for in vivo visualization of BAT activation. Inhibition of HA synthesis increases glycolysis, BAT respiration, and uncoupling protein 1 (UCP1) expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved, prescription-free drug, could be repurposed to treat obesity and diabetes.
  •  
22.
  • Green, Alanna C., et al. (author)
  • Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells
  • 2023
  • In: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 5:4, s. 642-659
  • Journal article (peer-reviewed)abstract
    • Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase–cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a ‘folate trap’. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
  •  
23.
  •  
24.
  • Helgeland, Øyvind, et al. (author)
  • Characterization of the genetic architecture of infant and early childhood body mass index.
  • 2022
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:3, s. 344-358
  • Journal article (peer-reviewed)abstract
    • Early childhood obesity is a growing global concern; however, the role of common genetic variation on infant and child weight development is unclear. Here, we identify 46 loci associated with early childhood body mass index at specific ages, matching different child growth phases, and representing four major trajectory patterns. We perform genome-wide association studies across 12 time points from birth to 8 years in 28,681 children and their parents (27,088 mothers and 26,239 fathers) in the Norwegian Mother, Father and Child Cohort Study. Monogenic obesity genes are overrepresented near identified loci, and several complex association signals near LEPR, GLP1R, PCSK1 and KLF14 point towards a major influence for common variation affecting the leptin-melanocortin system in early life, providing a link to putative treatment strategies. We also demonstrate how different polygenic risk scores transition from birth to adult profiles through early child growth. In conclusion, our results offer a fine-grained characterization of a changing genetic landscape sustaining early childhood growth.
  •  
25.
  •  
26.
  • Huang, Lam O., et al. (author)
  • Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities
  • 2021
  • In: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 3:2, s. 228-243
  • Journal article (peer-reviewed)abstract
    • Obesity is a major risk factor for cardiometabolic diseases. Nevertheless, a substantial proportion of individuals with obesity do not suffer cardiometabolic comorbidities. The mechanisms that uncouple adiposity from its cardiometabolic complications are not fully understood. Here, we identify 62 loci of which the same allele is significantly associated with both higher adiposity and lower cardiometabolic risk. Functional analyses show that the 62 loci are enriched for genes expressed in adipose tissue, and for regulatory variants that influence nearby genes that affect adipocyte differentiation. Genes prioritized in each locus support a key role of fat distribution (FAM13A, IRS1 and PPARG) and adipocyte function (ALDH2, CCDC92, DNAH10, ESR1, FAM13A, MTOR, PIK3R1 and VEGFB). Several additional mechanisms are involved as well, such as insulin-glucose signalling (ADCY5, ARAP1, CREBBP, FAM13A, MTOR, PEPD, RAC1 and SH2B3), energy expenditure and fatty acid oxidation (IGF2BP2), browning of white adipose tissue (CSK, VEGFA, VEGFB and SLC22A3) and inflammation (SH2B3, DAGLB and ADCY9). Some of these genes may represent therapeutic targets to reduce cardiometabolic risk linked to excess adiposity.
  •  
27.
  •  
28.
  • Jing, X, et al. (author)
  • COVID-19 instigates adipose browning and atrophy through VEGF in small mammals
  • 2022
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:12, s. 1674-
  • Journal article (peer-reviewed)abstract
    • Patients with COVID-19 frequently manifest adipose atrophy, weight loss and cachexia, which significantly contribute to poor quality of life and mortality1,2. Browning of white adipose tissue and activation of brown adipose tissue are effective processes for energy expenditure3–7; however, mechanistic and functional links between SARS-CoV-2 infection and adipose thermogenesis have not been studied. In this study, we provide experimental evidence that SARS-CoV-2 infection augments adipose browning and non-shivering thermogenesis (NST), which contributes to adipose atrophy and body weight loss. In mouse and hamster models, SARS-CoV-2 infection activates brown adipose tissue and instigates a browning or beige phenotype of white adipose tissues, including augmented NST. This browning phenotype was also observed in post-mortem adipose tissue of four patients who died of COVID-19. Mechanistically, high levels of vascular endothelial growth factor (VEGF) in the adipose tissue induces adipose browning through vasculature–adipocyte interaction. Inhibition of VEGF blocks COVID-19-induced adipose tissue browning and NST and partially prevents infection-induced body weight loss. Our data suggest that the browning of adipose tissues induced by COVID-19 can contribute to adipose tissue atrophy and weight loss observed during infection. Inhibition of VEGF signaling may represent an effective approach for preventing and treating COVID-19-associated weight loss.
  •  
29.
  • Khani, Sajjad, et al. (author)
  • Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function
  • 2024
  • In: Nature Metabolism. - 2522-5812.
  • Journal article (peer-reviewed)abstract
    • Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5′ truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation. 
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  • Lee, S. D., et al. (author)
  • IDOL regulates systemic energy balance through control of neuronal VLDLR expression
  • 2019
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:11
  • Journal article (peer-reviewed)abstract
    • Liver X receptors limit cellular lipid uptake by stimulating the transcription of inducible degrader of the low-density lipoprotein receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of dietinduced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose tissue, endothelium, intestine, and skeletal muscle) but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to the control of metabolism. Finally, we identified very low-density lipoprotein receptor (VLDLR) rather than low-density lipoprotein receptor (LDLR) as the primary mediator of the effects of IDOL on energy balance. These data identify a role for the neuronal IDOL-VLDLR pathway in metabolic homoeostasis and diet-induced obesity.
  •  
35.
  • Legouis, D., et al. (author)
  • Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality
  • 2020
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:8
  • Journal article (peer-reviewed)abstract
    • Acute kidney injury (AKI) is strongly associated with mortality, independently of its cause. The kidney contributes to up to 40% of systemic glucose production by gluconeogenesis during fasting and under stress conditions. Whether kidney gluconeogenesis is impaired during AKI and how this might influence systemic metabolism remain unknown. Here we show that glucose production and lactate clearance are impaired during human and experimental AKI by using renal arteriovenous catheterization in patients, lactate tolerance testing in mice and glucose isotope labelling in rats. Single-cell transcriptomics reveal that gluconeogenesis is impaired in proximal tubule cells during AKI. In a retrospective cohort of critically ill patients, we demonstrate that altered glucose metabolism during AKI is a major determinant of systemic glucose and lactate levels and is strongly associated with mortality. Thiamine supplementation increases lactate clearance without modifying renal function in mice with AKI, enhances glucose production by renal tubular cells ex vivo and is associated with reduced mortality and improvement of the metabolic pattern in a retrospective cohort of critically ill patients with AKI. This study highlights an unappreciated systemic role of renal glucose and lactate metabolism under stress conditions, delineates general mechanisms of AKI-associated mortality and introduces a potential intervention targeting metabolism for a highly prevalent clinical condition with limited therapeutic options.
  •  
36.
  •  
37.
  • Levine, Daniel C., et al. (author)
  • NADH inhibition of SIRT1 links energy state to transcription during time-restricted feeding
  • 2021
  • In: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 3:12, s. 1621-1632
  • Journal article (peer-reviewed)abstract
    • In mammals, circadian rhythms are entrained to the light cycle and drive daily oscillations in levels of NAD+, a cosubstrate of the class III histone deacetylase sirtuin 1 (SIRT1) that associates with clock transcription factors. Although NAD+ also participates in redox reactions, the extent to which NAD(H) couples nutrient state with circadian transcriptional cycles remains unknown. Here we show that nocturnal animals subjected to time-restricted feeding of a calorie-restricted diet (TRF-CR) only during night-time display reduced body temperature and elevated hepatic NADH during daytime. Genetic uncoupling of nutrient state from NADH redox state through transduction of the water-forming NADH oxidase from Lactobacillus brevis (LbNOX) increases daytime body temperature and blood and liver acyl-carnitines. LbNOX expression in TRF-CR mice induces oxidative gene networks controlled by brain and muscle Arnt-like protein 1 (BMAL1) and peroxisome proliferator-activated receptor alpha (PPARα) and suppresses amino acid catabolic pathways. Enzymatic analyses reveal that NADH inhibits SIRT1 in vitro, corresponding with reduced deacetylation of SIRT1 substrates during TRF-CR in vivo. Remarkably, Sirt1 liver nullizygous animals subjected to TRF-CR display persistent hypothermia even when NADH is oxidized by LbNOX. Our findings reveal that the hepatic NADH cycle links nutrient state to whole-body energetics through the rhythmic regulation of SIRT1.
  •  
38.
  • Li, Shuijie, et al. (author)
  • Impaired oxygen-sensitive regulation of mitochondrial biogenesis within the von Hippel–Lindau syndrome
  • 2022
  • In: Nature Metabolism. - : Nature Publishing Group. - 2522-5812. ; 4:6, s. 739-758
  • Journal article (peer-reviewed)abstract
    • Mitochondria are the main consumers of oxygen within the cell. How mitochondria sense oxygen levels remains unknown. Here we show an oxygen-sensitive regulation of TFAM, an activator of mitochondrial transcription and replication, whose alteration is linked to tumours arising in the von Hippel–Lindau syndrome. TFAM is hydroxylated by EGLN3 and subsequently bound by the von Hippel–Lindau tumour-suppressor protein, which stabilizes TFAM by preventing mitochondrial proteolysis. Cells lacking wild-type VHL or in which EGLN3 is inactivated have reduced mitochondrial mass. Tumorigenic VHL variants leading to different clinical manifestations fail to bind hydroxylated TFAM. In contrast, cells harbouring the Chuvash polycythaemia VHLR200W mutation, involved in hypoxia-sensing disorders without tumour development, are capable of binding hydroxylated TFAM. Accordingly, VHL-related tumours, such as pheochromocytoma and renal cell carcinoma cells, display low mitochondrial content, suggesting that impaired mitochondrial biogenesis is linked to VHL tumorigenesis. Finally, inhibiting proteolysis by targeting LONP1 increases mitochondrial content in VHL-deficient cells and sensitizes therapy-resistant tumours to sorafenib treatment. Our results offer pharmacological avenues to sensitize therapy-resistant VHL tumours by focusing on the mitochondria.
  •  
39.
  •  
40.
  • MacDonald, P. E., et al. (author)
  • Metabolic Messengers: glucagon
  • 2023
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 5:2, s. 186-192
  • Journal article (peer-reviewed)abstract
    • Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting beta-cells, the alpha-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
  •  
41.
  • Mancina, Rosellina Margherita, et al. (author)
  • PSD3 downregulation confers protection against fatty liver disease.
  • 2022
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:1, s. 60-75
  • Journal article (peer-reviewed)abstract
    • Fatty liver disease (FLD) is a growing health issue with burdening unmet clinical needs. FLD has a genetic component but, despite the common variants already identified, there is still a missing heritability component. Using a candidate gene approach, we identify a locus (rs71519934) at the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene resulting in a leucine to threonine substitution at position 186 of the protein (L186T) that reduces susceptibility to the entire spectrum of FLD in individuals at risk. PSD3 downregulation by short interfering RNA reduces intracellular lipid content in primary human hepatocytes cultured in two and three dimensions, and in human and rodent hepatoma cells. Consistent with this, Psd3 downregulation by antisense oligonucleotides in vivo protects against FLD in mice fed a non-alcoholic steatohepatitis-inducing diet. Thus, translating these results to humans, PSD3 downregulation might be a future therapeutic option for treating FLD.
  •  
42.
  •  
43.
  • Maqdasy, S, et al. (author)
  • Impaired phosphocreatine metabolism in white adipocytes promotes inflammation
  • 2022
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:2, s. 190-
  • Journal article (peer-reviewed)abstract
    • The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.
  •  
44.
  •  
45.
  •  
46.
  • Monelli, Erika, et al. (author)
  • Angiocrine polyamine production regulates adiposity
  • 2022
  • In: Nature Metabolism. - : Springer Nature. - 2522-5812. ; 4:3, s. 327-
  • Journal article (peer-reviewed)abstract
    • Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid beta-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism. Endothelial cells in white adipose tissue are shown to produce polyamines, which regulate adipocyte lipolysis, thus demonstrating how local angiocrine signals contribute to healthy adipose tissue homeostasis.
  •  
47.
  •  
48.
  •  
49.
  • Morgantini, C., et al. (author)
  • Liver macrophages regulate systemic metabolism through non-inflammatory factors
  • 2019
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:4, s. 445-459
  • Journal article (peer-reviewed)abstract
    • Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 73

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view