SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ageev Dmitry) "

Search: WFRF:(Ageev Dmitry)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ageev, Dmitry S., et al. (author)
  • Coleman-Weinberg potential in p-adic field theory
  • 2020
  • In: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 80:9
  • Journal article (peer-reviewed)abstract
    • In this paper, we study lambda phi(4) scalar field theory defined on the unramified extension of p-adic numbers Q(pn). For different "space-time" dimensions n, we compute one-loop quantum corrections to the effective potential. Surprisingly, despite the unusual properties of non-Archimedean geometry, the Coleman-Weinberg potential of p-adic field theory has structure very similar to that of its real cousin. We also study two formal limits of the effective potential, p -> 1 and p -> infinity. We show that the p -> 1 limit allows to reconstruct the canonical result for real field theory from the p-adic effective potential and provide an explanation of this fact. On the other hand, in the p -> infinity limit, the theory exhibits very peculiar behavior with emerging logarithmic terms in the effective potential, which has no analogue in real theories.
  •  
2.
  • Ageev, Dmitry S., et al. (author)
  • Deterministic chaos and fractal entropy scaling in Floquet conformal field theories
  • 2021
  • In: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 103:10
  • Journal article (peer-reviewed)abstract
    • In this Letter, we study two-dimensional Floquet conformal field theory, where the external periodic driving is described by iterated logistic or tent maps. These maps are known to be typical examples of dynamical systems exhibiting the order-chaos transition, and we show that, as a result of such driving, the entanglement entropy scaling develops fractal features when the corresponding dynamical system approaches the chaotic regime. For the driving set by the logistic map, the fractal contribution to the scaling dominates, making entanglement entropy a highly oscillating function of the subsystem size.
  •  
3.
  • Zamora, Juan Carlos, et al. (author)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • In: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Journal article (peer-reviewed)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view