SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alarcon Riquelme M. E.) "

Search: WFRF:(Alarcon Riquelme M. E.)

  • Result 1-50 of 99
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Liu, Kui, et al. (author)
  • Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans
  • 2009
  • In: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 119:4, s. 911-923
  • Journal article (peer-reviewed)abstract
    • Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.
  •  
3.
  •  
4.
  • Khatri, B., et al. (author)
  • Genome-wide association study identifies Sjogren's risk loci with functional implications in immune and glandular cells
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Sjogren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjogren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands. The genetic architecture underlying Sjogren's syndrome is not fully understood. Here, the authors perform a genome-wide association study to identify 10 new genetic risk regions, implicating genes involved in immune and salivary gland function.
  •  
5.
  • Langefeld, Carl D., et al. (author)
  • Transancestral mapping and genetic load in systemic lupus erythematosus
  • 2017
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (similar to 50% of these regions have multiple independent associations); these include 24 novel SLE regions (P < 5 x 10(-8)), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.
  •  
6.
  •  
7.
  • Lu, R, et al. (author)
  • Genetic associations of LYN with systemic lupus erythematosus
  • 2009
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 10:5, s. 397-403
  • Journal article (peer-reviewed)abstract
    • We targeted LYN, a src-tyosine kinase involved in B-cell activation, in case-control association studies using populations of European-American, African-American and Korean subjects. Our combined European-derived population, consisting of 2463 independent cases and 3131 unrelated controls, shows significant association with rs6983130 in a female-only analysis with 2254 cases and 2228 controls (P=1.1 x 10(-4), odds ratio (OR)=0.81 (95% confidence interval: 0.73-0.90)). This single nucleotide polymorphism (SNP) is located in the 5' untranslated region within the first intron near the transcription initiation site of LYN. In addition, SNPs upstream of the first exon also show weak and sporadic association in subsets of the total European-American population. Multivariate logistic regression analysis implicates rs6983130 as a protective factor for systemic lupus erythematosus (SLE) susceptibility when anti-dsDNA, anti-chromatin, anti-52 kDa Ro or anti-Sm autoantibody status were used as covariates. Subset analysis of the European-American female cases by American College of Rheumatology classification criteria shows a reduction in the risk of hematological disorder with rs6983130 compared with cases without hematological disorders (P=1.5 x 10(-3), OR=0.75 (95% CI: 0.62-0.89)). None of the 90 SNPs tested show significant association with SLE in the African American or Korean populations. These results support an association of LYN with European-derived individuals with SLE, especially within autoantibody or clinical subsets.
  •  
8.
  • Kottyan, Leah C., et al. (author)
  • The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share.
  • 2015
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:2, s. 582-596
  • Journal article (peer-reviewed)abstract
    • Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögrens syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.
  •  
9.
  • Lessard, Christopher J., et al. (author)
  • Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as Susceptibility Loci for Systemic Lupus Erythematosus in a Large-Scale Multiracial Replication Study
  • 2012
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 90:4, s. 648-660
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a chronic heterogeneous autoimmune disorder characterized by the loss of tolerance to self-antigens and dysregulated interferon responses. The etiology of SLE is complex, involving both heritable and environmental factors. Candidate-gene studies and genome-wide association (GWA) scans have been successful in identifying new loci that contribute to disease susceptibility; however, much of the heritable risk has yet to be identified. In this study, we sought to replicate 1,580 variants showing suggestive association with SLE in a previously published GWA scan of European Americans; we tested a multiethnic population consisting of 7,998 SLE cases and 7,492 controls of European, African American, Asian, Hispanic, Gullah, and Amerindian ancestry to find association with the disease. Several genes relevant to immunological pathways showed association with SLE. Three loci exceeded the genome-wide significance threshold: interferon regulatory factor 8 (IRF8; rs11644034; p(meta-Euro) = 2.08 x 10(-10)), transmembrane protein 39A (TMEM39A; rs1132200; p(meta-all) 8.62 x 10(-9)), and 17q21 (rs1453560; p(meta-all) = 3.48 x 10(-10)) between IKAROS family of zinc finger 3 (AIOLOS; IKZF3) and zona pellucida binding protein 2 (ZPBP2). Fine mapping, resequencing, imputation, and haplotype analysis of IRF8 indicated that three independent effects tagged by rs8046526, rs450443, and rs4843869, respectively, were required for risk in individuals of European ancestry. Eleven additional replicated effects (5 x 10(-8) < p(meta-Euro) < 9.99 x 10(-5)) were observed with CFHR1, CADM2, LOC730109/IL12A, LPP, LOC63920, SLU7, ADAMTSL1, C10orf64, OR8D4 FAM19A2, and STXBP6. The results of this study increase the number of confirmed SLE risk loci and identify others warranting further investigation.
  •  
10.
  • Liu, Ke, et al. (author)
  • X Chromosome Dose and Sex Bias in Autoimmune Diseases
  • 2016
  • In: Arthritis & Rheumatology. - : WILEY-BLACKWELL. - 2326-5191 .- 2326-5205. ; 68:5, s. 1290-1300
  • Journal article (peer-reviewed)abstract
    • Objective. More than 80% of autoimmune disease predominantly affects females, but the mechanism for this female bias is poorly understood. We suspected that an X chromosome dose effect accounts for this, and we undertook this study to test our hypothesis that trisomy X (47, XXX; occurring in similar to 1 in 1,000 live female births) would be increased in patients with female-predominant diseases (systemic lupus erythematosus [SLE], primary Sjogrens syndrome [SS], primary biliary cirrhosis, and rheumatoid arthritis [RA]) compared to patients with diseases without female predominance (sarcoidosis) and compared to controls. Methods. All subjects in this study were female. We identified subjects with 47, XXX using aggregate data from single-nucleotide polymorphism arrays, and, when possible, we confirmed the presence of 47, XXX using fluorescence in situ hybridization or quantitative polymerase chain reaction. Results. We found 47, XXX in 7 of 2,826 SLE patients and in 3 of 1,033 SS patients, but in only 2 of 7,074 controls (odds ratio in the SLE and primary SS groups 8.78 [95% confidence interval 1.67-86.79], P = 0.003 and odds ratio 10.29 [95% confidence interval 1.18-123.47], P = 0.02, respectively). One in 404 women with SLE and 1 in 344 women with SS had 47, XXX. There was an excess of 47, XXX among SLE and SS patients. Conclusion. The estimated prevalence of SLE and SS in women with 47, XXX was similar to 2.5 and similar to 2.9 times higher, respectively, than that in women with 46, XX and similar to 25 and similar to 41 times higher, respectively, than that in men with 46, XY. No statistically significant increase of 47, XXX was observed in other female-biased diseases (primary biliary cirrhosis or RA), supporting the idea of multiple pathways to sex bias in autoimmunity.
  •  
11.
  • Liu, Ke, et al. (author)
  • X Chromosome Dose and Sex Bias in Autoimmune Diseases : Increased 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome
  • 2016
  • In: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 68:5, s. 1290-1300
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE:More than 80% of autoimmune disease is female dominant, but the mechanism for this female bias is poorly understood. We suspected an X chromosome dose effect and hypothesized that trisomy X (47,XXX, 1 in ∼1,000 live female births) would be increased in female predominant diseases (e.g. systemic lupus erythematosus [SLE], primary Sjögren's syndrome [SS], primary biliary cirrhosis [PBC] and rheumatoid arthritis [RA]) compared to diseases without female predominance (sarcoidosis) and controls.METHODS:We identified 47,XXX subjects using aggregate data from single nucleotide polymorphism (SNP) arrays and confirmed, when possible, by fluorescent in situ hybridization (FISH) or quantitative polymerase chain reaction (q-PCR).RESULTS:We found 47,XXX in seven of 2,826 SLE and three of 1,033 SS female patients, but only in two of the 7,074 female controls (p=0.003, OR=8.78, 95% CI: 1.67-86.79 and p=0.02, OR=10.29, 95% CI: 1.18-123.47; respectively). One 47,XXX subject was present for ∼404 SLE women and ∼344 SS women. 47,XXX was present in excess among SLE and SS subjects.CONCLUSION:The estimated prevalence of SLE and SS in women with 47,XXX was respectively ∼2.5 and ∼2.9 times higher than in 46,XX women and ∼25 and ∼41 times higher than in 46,XY men. No statistically significant increase of 47,XXX was observed in other female-biased diseases (PBC or RA), supporting the idea of multiple pathways to sex bias in autoimmunity. This article is protected by copyright. All rights reserved.
  •  
12.
  • Mayes, Maureen D, et al. (author)
  • Immunochip analysis identifies multiple susceptibility Loci for systemic sclerosis.
  • 2014
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 94:1, s. 47-61
  • Journal article (peer-reviewed)abstract
    • In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
  •  
13.
  • Namjou, B., et al. (author)
  • Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort
  • 2011
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 12:4, s. 270-279
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors have a role. Rare mutations in the TREX1 gene, the major mammalian 3'-5' exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurological condition featuring an inflammatory encephalopathy known as Aicardi-Goutieres syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls. A total of 40 single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene, were evaluated in similar to 8370 patients with SLE and similar to 7490 control subjects. Stringent quality control procedures were applied, and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P-values, false-discovery rate q values, and odds ratios (OR) with 95% confidence intervals (CI) were calculated. The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient, whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (minor allele frequency (MAF)>10%) revealed a relatively common risk haplotype in European SLE patients with neurological manifestations, especially seizures, with a frequency of 58% in lupus cases compared with 45% in normal controls (P = 0.0008, OR = 1.73, 95% CI = 1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (P = 2.99E-13, OR = 5.2, 95% CI = 3.18-8.56). Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis. Genes and Immunity (2011) 12, 270-279; doi:10.1038/gene.2010.73; published online 27 January 2011
  •  
14.
  • Namjou, Bahram, et al. (author)
  • Evaluation of TRAF6 in a large multiancestral lupus cohort
  • 2012
  • In: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 64:6, s. 1960-1969
  • Journal article (peer-reviewed)abstract
    • Objective Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with significant immune system aberrations resulting from complex heritable genetics as well as environmental factors. We undertook to study the role of TRAF6 as a candidate gene for SLE, since it plays a major role in several signaling pathways that are important for immunity and organ development. Methods Fifteen single-nucleotide polymorphisms (SNPs) across TRAF6 were evaluated in 7,490 SLE patients and 6,780 control subjects from different ancestries. Population-based casecontrol association analyses and meta-analyses were performed. P values, false discovery rate q values, and odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. Results Evidence of associations was detected in multiple SNPs. The best overall P values were obtained for SNPs rs5030437 and rs4755453 (P = 7.85 x 10(-5) and P = 4.73 x 10(-5), respectively) without significant heterogeneity among populations (P = 0.67 and P = 0.50, respectively, in Q statistic). In addition, SNP rs540386, which was previously reported to be associated with rheumatoid arthritis (RA), was found to be in linkage disequilibrium with these 2 SNPs (r2 = 0.95) and demonstrated evidence of association with SLE in the same direction (meta-analysis P = 9.15 x 10(-4), OR 0.89 [95% CI 0.830.95]). The presence of thrombocytopenia improved the overall results in different populations (meta-analysis P = 1.99 x 10(-6), OR 0.57 [95% CI 0.450.72], for rs5030470). Finally, evidence of family-based association in 34 African American pedigrees with the presence of thrombocytopenia was detected in 1 available SNP (rs5030437) with a Z score magnitude of 2.28 (P = 0.02) under a dominant model. Conclusion Our data indicate the presence of association of TRAF6 with SLE, consistent with the previous report of association with RA. These data provide further support for the involvement of TRAF6 in the pathogenesis of autoimmunity.
  •  
15.
  • Cruz, Raquel, et al. (author)
  • Novel genes and sex differences in COVID-19 severity
  • 2022
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 31:22, s. 3789-3806
  • Journal article (peer-reviewed)abstract
    • Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.
  •  
16.
  • Douglas, K. B., et al. (author)
  • Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing
  • 2009
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 10:5, s. 457-469
  • Journal article (peer-reviewed)abstract
    • Genetic factors influence susceptibility to systemic lupus erythematosus (SLE). A recent family-based analysis in Caucasian and Chinese populations provided evidence for association of single-nucleotide polymorphisms (SNPs) in the complement receptor 2 (CR2/CD21) gene with SLE. Here we confirmed this result in a case-control analysis of an independent European-derived population including 2084 patients with SLE and 2853 healthy controls. A haplotype formed by the minor alleles of three CR2 SNPs (rs1048971, rs17615, rs4308977) showed significant association with decreased risk of SLE (30.4% in cases vs 32.6% in controls, P=0.016, OR=0.90 (0.82-0.98)). Two of these SNPs are in exon 10, directly 5' of an alternatively spliced exon preferentially expressed in follicular dendritic cells (FDC), and the third is in the alternatively spliced exon. Effects of these SNPs and a fourth SNP in exon 11 (rs17616) on alternative splicing were evaluated. We found that the minor alleles of these SNPs decreased splicing efficiency of exon 11 both in vitro and ex vivo. These findings further implicate CR2 in the pathogenesis of SLE and suggest that CR2 variants alter the maintenance of tolerance and autoantibody production in the secondary lymphoid tissues where B cells and FDCs interact.
  •  
17.
  • Lessard, Christopher J., et al. (author)
  • Identification of a Systemic Lupus Erythematosus Susceptibility Locus at 11p13 between PDHX and CD44 in a Multiethnic Study
  • 2011
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 88:1, s. 83-91
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is considered to be the prototypic autoimmune disease, with a complex genetic architecture influenced by environmental factors. We sought to replicate a putative association at 11p13 not yet exceeding genome-wide significance (p < 5 x 10(-8)) identified in a genome-wide association study (GWAS). Our GWA scan identified two intergenic SNPs located between PDHX and CD44 showing suggestive evidence of association with SLE in cases of European descent (rs2732552, p = 0.004, odds ratio [OR] = 0.78; rs387619, p = 0.003, OR = 0.78). The replication cohort consisted of >15,000 subjects, including 3562 SLE cases and 3491 controls of European ancestry, 1527 cases and 1811 controls of African American (AA) descent, and 1265 cases and 1260 controls of Asian origin. We observed robust association at both rs2732552 (p = 9.03 x 10(-8), OR = 0.83) and rs387619 (p = 7.7 x 10(-7), OR = 0.83) in the European samples with p(meta) = 1.82 x 10(-9) for rs2732552. The AA and Asian SLE cases also demonstrated association at rs2732552 (p = 5 x 10(-3), OR = 0.81 and p = 4.3 x 10(-4), OR = 0.80, respectively). A meta-analysis of rs2732552 for all racial and ethnic groups studied produced p(meta) = 2.36 x 10(-13). This locus contains multiple regulatory sites that could potentially affect expression and functions of CD44, a cell-surface glycoprotein influencing immunologic, inflammatory, and oncologic phenotypes, or PDHX, a subunit of the pyruvate dehydrogenase complex.
  •  
18.
  • Orozco, G., et al. (author)
  • Study of the role of functional variants of SLC22A4, RUNX1 and SUMO4 in systemic lupus erythematosus
  • 2006
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 65:6, s. 791-5
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Functional polymorphisms of the solute carrier family 22, member 4 (SLC22A4), runt related transcription factor 1 (RUNX1) and small ubiquitin-like modifier 4 (SUMO4) genes have been shown to be associated with several autoimmune diseases. OBJECTIVE: To test the possible role of these variants in susceptibility to or severity of systemic lupus erythematosus (SLE), on the basis that common genetic bases are shared by autoimmune disorders. METHODS: 597 SLE patients and 987 healthy controls of white Spanish origin were studied. Two additional cohorts of 228 SLE patients from Sweden and 122 SLE patients from Colombia were included. A case-control association study was carried out with six single nucleotide polymorphisms (SNP) spanning the SLC22A4 gene, one SNP in RUNX1 gene, and one additional SNP in SUM04 gene. RESULTS: No significant differences were observed between SLE patients and healthy controls when comparing the distribution of the genotypes or alleles of any of the SLC22A4, RUNX1, or SUMO4 polymorphisms tested. Significant differences were found in the distribution of the SUMO4 genotypes and alleles among SLE patients with and without nephritis, but after multiple testing correction, the significance of the association was lost. The association of SUMO4 with nephritis could not be verified in two independent SLE cohorts from Sweden and Colombia. CONCLUSIONS: These results suggest that the SLC22A4, RUNX1, and SUMO4 polymorphisms analysed do not play a role in the susceptibility to or severity of SLE.
  •  
19.
  • Adrianto, Indra, et al. (author)
  • Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 43:3, s. 253-258
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT>A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 x 10(-8), odds ratio = 1.70) and Korean (P = 8.33 x 10(-10), odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-kappa B subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.
  •  
20.
  • Harley, Isaac T. W., et al. (author)
  • The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus
  • 2010
  • In: Journal of Biomedicine and Biotechnology. - : Hindawi Limited. - 1110-7243 .- 1110-7251. ; , s. 706825-
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by increased type I interferons (IFNs) and multiorgan inflammation frequently targeting the skin. IFN-kappa is a type I IFN expressed in skin. A pooled genome-wide scan implicated the IFNK locus in SLE susceptibility. We studied IFNK single nucleotide polymorphisms (SNPs) in 3982 SLE cases and 4275 controls, composed of European (EA), African-American (AA), and Asian ancestry. rs12553951C was associated with SLE in EA males (odds ratio = 1.93, P = 2.5 x 10(-4)), but not females. Suggestive associations with skin phenotypes in EA and AA females were found, and these were also sex-specific. IFNK SNPs were associated with increased serum type I IFN in EA and AA SLE patients. Our data suggest a sex-dependent association between IFNK SNPs and SLE and skin phenotypes. The serum IFN association suggests that IFNK variants could influence type I IFN producing plasmacytoid dendritic cells in affected skin.
  •  
21.
  • Teruel, M, et al. (author)
  • Integrative epigenomics in Sjögren´s syndrome reveals novel pathways and a strong interaction between the HLA, autoantibodies and the interferon signature
  • 2021
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 23292-
  • Journal article (peer-reviewed)abstract
    • Primary Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by lymphocytic infiltration and damage of exocrine salivary and lacrimal glands. The etiology of SS is complex with environmental triggers and genetic factors involved. By conducting an integrated multi-omics study, we confirmed a vast coordinated hypomethylation and overexpression effects in IFN-related genes, what is known as the IFN signature. Stratified and conditional analyses suggest a strong interaction between SS-associated HLA genetic variation and the presence of Anti-Ro/SSA autoantibodies in driving the IFN epigenetic signature and determining SS. We report a novel epigenetic signature characterized by increased DNA methylation levels in a large number of genes enriched in pathways such as collagen metabolism and extracellular matrix organization. We identified potential new genetic variants associated with SS that might mediate their risk by altering DNA methylation or gene expression patterns, as well as disease-interacting genetic variants that exhibit regulatory function only in the SS population. Our study sheds new light on the interaction between genetics, autoantibody profiles, DNA methylation and gene expression in SS, and contributes to elucidate the genetic architecture of gene regulation in an autoimmune population.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Ombrello, MJ, et al. (author)
  • Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications
  • 2017
  • In: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 76:5, s. 906-913
  • Journal article (peer-reviewed)abstract
    • Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA.MethodsWe performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes.ResultsThe major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes.ConclusionsThe lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways.
  •  
28.
  •  
29.
  • Castillejo-Lopez, Casimiro, et al. (author)
  • Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK
  • 2012
  • In: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 71:1, s. 136-142
  • Journal article (peer-reviewed)abstract
    • ObjectivesAltered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis.MethodsThe GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK.ResultsEpistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies.ConclusionsThis study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.
  •  
30.
  • Harley, John B., et al. (author)
  • Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 40:2, s. 204-10
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (lambda(S) = approximately 30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 x 10(-7) < P(overall) < 1.6 x 10(-23); odds ratio = 0.82-1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 x 10(-5)) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at > or =9 other loci (P < 2 x 10(-7)). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
  •  
31.
  •  
32.
  •  
33.
  • Seldin, M. F., et al. (author)
  • Amerindian ancestry in Argentina is associated with increased risk for systemic lupus erythematosus
  • 2008
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 9:4, s. 389-393
  • Journal article (peer-reviewed)abstract
    • Previous studies have demonstrated that in admixed populations, West African ancestry is associated with an increased prevalence of systemic lupus erythematosus (SLE). In the current study, the effect of Amerindian ancestry in SLE was examined in an admixed population in Argentina. The Argentine population is predominantly European with approximately 20% Amerindian admixture, and a very small (<2%) contribution from West Africa. The results indicate that Amerindian admixture in this population is associated with a substantial increase in SLE susceptibility risk (Odds Ratio=7.94, P=0.00006). This difference was not due to known demographic factors, including site of collection, age and gender. In addition, there were trends towards significance for Amerindian ancestry influencing renal disease, age of onset and anti-SSA antibodies. These studies suggest that populations with Amerindian admixture, like those with West African admixture, should be considered in future studies to identify additional allelic variants that predispose to SLE.
  •  
34.
  • Webb, Ryan, et al. (author)
  • A polymorphism within IL21R confers risk for systemic lupus erythematosus
  • 2009
  • In: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 60:8, s. 2402-2407
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Interleukin-21 (IL-21) is a member of the type I cytokine superfamily that has a variety of effects on the immune system, including B cell activation, plasma cell differentiation, and immunoglobulin production. The expression of IL-21 receptor (IL-21R) is reduced in the B cells of patients with systemic lupus erythematosus (SLE), while serum IL-21 levels are increased both in lupus patients and in some murine lupus models. We recently reported that polymorphisms within the IL21 gene are associated with increased susceptibility to SLE. The aim of this study was to examine the genetic association between single-nucleotide polymorphisms (SNPs) within IL21R and SLE. METHODS: We genotyped 17 SNPs in the IL21R gene in 2 large cohorts of lupus patients (a European-derived cohort and a Hispanic cohort) and in ethnically matched healthy controls. RESULTS: We identified and confirmed the association between rs3093301 within the IL21R gene and SLE in the 2 cohorts (meta-analysis odds ratio 1.16 [95% confidence interval 1.08-1.25], P=1.0x10(-4)). CONCLUSION: Our findings indicate that IL21R is a novel susceptibility gene for SLE.
  •  
35.
  • Webb, Ryan, et al. (author)
  • Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus
  • 2009
  • In: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 60:4, s. 1076-1084
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Both genetic and epigenetic factors play an important role in the pathogenesis of lupus. The aim of this study was to examine methyl-CpG-binding protein 2 gene (MECP2) polymorphisms in a large cohort of patients with lupus and control subjects, and to determine the functional consequences of the lupus-associated MECP2 haplotype. METHODS: We genotyped 18 single-nucleotide polymorphisms within MECP2, located on chromosome Xq28, in a large cohort of patients with lupus and control subjects of European descent. We studied the functional effects of the lupus-associated MECP2 haplotype by determining gene expression profiles in B cell lines in female lupus patients with and those without the lupus-associated MECP2 risk haplotype. RESULTS: We confirmed, replicated, and extended the genetic association between lupus and genetic markers within MECP2 in a large independent cohort of lupus patients and control subjects of European descent (odds ratio 1.35, P = 6.65 x 10(-11)). MECP2 is a dichotomous transcription regulator that either activates or represses gene expression. We identified 128 genes that are differentially expressed in lupus patients with the disease-associated MECP2 haplotype; most ( approximately 81%) were up-regulated. Genes that were up-regulated had significantly more CpG islands in their promoter regions compared with genes that were down-regulated. Gene ontology analysis using the differentially expressed genes revealed significant association with epigenetic regulatory mechanisms, suggesting that these genes are targets for MECP2 regulation in B cells. Furthermore, at least 13 of the 104 up-regulated genes are regulated by interferon. The disease-risk MECP2 haplotype was associated with increased expression of the MECP2 transcription coactivator CREB1 and decreased expression of the corepressor histone deacetylase 1. CONCLUSION: Polymorphism in the MECP2 locus is associated with lupus and, at least in part, contributes to the interferon signature observed in lupus patients.
  •  
36.
  • Yu, X., et al. (author)
  • Association of UCP2 - 866 G/A polymorphism with chronic inflammatory diseases
  • 2009
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 10:6, s. 601-605
  • Journal article (peer-reviewed)abstract
    • We reported earlier that two mitochondrial gene polymorphisms, UCP2 -866 G/A (rs659366) and mtDNA nt13708 G/A (rs28359178), are associated with multiple sclerosis (MS). Here we aim to investigate whether these functional polymorphisms contribute to other eight chronic inflammatory diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Wegener' granulomatosis (WG), Churg-Strauss syndrome (CSS), Crohn's disease (CD), ulcerative colitis (UC), primary sclerosing cholangitis (PSC) and psoriasis. Compared with individual control panels, the UCP2 -866 G/A polymorphism was associated with RA and SLE, and the mtDNA nt13708 G/A polymorphism with RA. Compared with combined controls, the UCP2 -866 G/A polymorphism was associated with SLE, WG, CD and UC. When all eight disease panels and the original MS panel were combined in a meta-analysis, the UCP2 was associated with chronic inflammatory diseases in terms of either alleles (odds ratio (OR)=0.91, 95% confidence interval (95% CI): 0.86-0.96), P=0.0003) or genotypes (OR=0.88, (95% CI: 0.82-0.95), P=0.0008), with the -866A allele associated with a decreased risk to diseases. As the -866A allele increases gene expression, our findings suggest a protective role of the UCP2 protein in chronic inflammatory diseases.
  •  
37.
  • Acosta-Herrera, M, et al. (author)
  • Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases
  • 2019
  • In: Annals of the rheumatic diseases. - : BMJ. - 1468-2060 .- 0003-4967. ; 78:3, s. 311-319
  • Journal article (peer-reviewed)abstract
    • Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies.MethodsWe meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases.ResultsOur analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study.ConclusionsWe have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs.
  •  
38.
  • Chung, Sharon A., et al. (author)
  • Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti-dsDNA Autoantibody Production
  • 2011
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:3, s. e1001323-
  • Journal article (peer-reviewed)abstract
    • Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811) and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20) compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04), with (Pheterogeneity)<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE.
  •  
39.
  • Delgado-Vega, Angelica M., et al. (author)
  • Replication of the TNFSF4 (OX40L) promoter region association with systemic lupus erythematosus
  • 2009
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 10:3, s. 248-253
  • Journal article (peer-reviewed)abstract
    • The tumor necrosis factor ligand superfamily member 4 gene (TNFSF4) encodes the OX40 ligand (OX40L), a costimulatory molecule involved in T-cell activation. A recent study demonstrated the association of TNFSF4 haplotypes located in the upstream region with risk for or protection from systemic lupus erythematosus (SLE). To replicate this association, five single nucleotide polymorphisms (SNPs) tagging the previously associated haplotypes and passing the proper quality-control filters were tested in 1312 cases and 1801 controls from Germany, Italy, Spain and Argentina. The association of TNFSF4 with SLE was replicated in all the sets except Spain. There was a unique risk haplotype tagged by the minor alleles of the SNPs rs1234317 (pooled odds ratio (OR)=1.39, P=0.0009) and rs12039904 (pooled OR=1.38, P=0.0012). We did not observe association to a single protective marker (rs844644) or haplotype as the first study reported; instead, we observed different protective haplotypes, all carrying the major alleles of both SNPs rs1234317 and rs12039904. Association analysis conditioning on the haplotypic background confirmed that these two SNPs explain the entire haplotype effect. This first replication study confirms the association of genetic variation in the upstream region of TNFSF4 with susceptibility to SLE.
  •  
40.
  • Forabosco, P., et al. (author)
  • Meta-analysis of genome-wide linkage studies of systemic lupus erythematosus
  • 2006
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 7:7, s. 609-614
  • Journal article (peer-reviewed)abstract
    • A genetic contribution to the development of systemic lupus erythematosus (SLE) is well established. Several genome-wide linkage scans have identified a number of putative susceptibility loci for SLE, some of which have been replicated in independent samples. This study aimed to identify the regions showing the most consistent evidence for linkage by applying the genome scan meta-analysis (GSMA) method. The study identified two genome-wide suggestive regions on 6p21.1-q15 and 20p11-q13.13 (P-value=0.0056 and P-value=0.0044, respectively) and a region with P-value<0.01 on 16p13-q12.2.The region on chromosome 6 contains the human leukocyte antigen cluster, and the chromosome 16 and 20 regions have been replicated in several cohorts. The potential importance of the identified genomic regions are also highlighted. These results, in conjunction with data emerging from dense single nucleotide polymorphism typing of specific regions or future genome-wide association studies will help guide efforts to identify the actual predisposing genetic variation contributing to this complex genetic disease.
  •  
41.
  • Han, Shizhong, et al. (author)
  • Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE)
  • 2009
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:6, s. 1171-1180
  • Journal article (peer-reviewed)abstract
    • We recently identified a novel non-synonymous variant, rs1143679, at exon 3 of the ITGAM gene associated with systemic lupus erythematosus (SLE) susceptibility in European-Americans (EAs) and African-Americans. Using genome-wide association approach, three other studies also independently reported an association between SLE susceptibility and ITGAM or ITGAM-ITGAX region. The primary objectives of this study are to assess whether single or multiple causal variants from the same gene or any nearby gene(s) are involved in SLE susceptibility and to confirm a robust ITGAM association across nine independent data sets (n = 8211). First, we confirmed our previously reported association of rs1143679 (risk allele 'A') with SLE in EAs (P = 1.0 x 10(-8)) and Hispanic-Americans (P = 2.9 x 10(-5)). Secondly, using a comprehensive imputation-based association test, we found that ITGAM is one of the major non-human leukocyte antigen susceptibility genes for SLE, and the strongest association for EA is the same coding variant rs1143679 (log(10)Bayes factor=20, P = 6.17 x 10(-24)). Thirdly, we determined the robustness of rs1143679 association with SLE across three additional case-control samples, including UK (P = 6.2 x 10(-8)), Colombian (P = 3.6 x 10(-7)), Mexican (P = 0.002), as well as two independent sets of trios from UK (P(TDT) = 1.4 x 10(-5)) and Mexico (P(TDT) = 0.015). A meta-analysis combing all independent data sets greatly reinforces the association (P(meta) = 7.1 x 10(-50), odds ratio = 1.83, 95% confidence interval = 1.69-1.98, n = 10 046). However, this ITGAM association was not observed in the Korean or Japanese samples, in which rs1143679 is monomorphic for the non-risk allele (G). Taken together along with our earlier findings, these results demonstrate that the coding variant, rs1143679, best explains the ITGAM-SLE association, especially in European- and African-derived populations, but not in Asian populations.
  •  
42.
  • Löfgren, Sara E., et al. (author)
  • A 3 '-Untranslated Region Variant Is Associated With Impaired Expression of CD226 in T and Natural Killer T Cells and Is Associated With Susceptibility to Systemic Lupus Erythematosus
  • 2010
  • In: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 62:11, s. 3404-3414
  • Journal article (peer-reviewed)abstract
    • Objective. Costimulatory receptor CD226 plays an important role in T cell activation, differentiation, and cytotoxicity. This study was undertaken to investigate the genetic association of CD226 with susceptibility to systemic lupus erythematosus (SLE) and to assess the functional implications of this association. Methods. Twelve tag single-nucleotide polymorphisms (SNPs) in CD226 were typed in 1,163 SLE patients and 1,482 healthy control subjects from Europe or of European ancestry. Analyses of association were performed by single-marker Cochran-Mantel-Haenszel meta-analysis, followed by haplotype analysis. Gene expression was analyzed by quantitative real-time polymerase chain reaction analyses of RNA from peripheral blood mononuclear cells, and by fluorescence-activated cell sorter analysis. To study the functional impact of the associated variants, luciferase reporter constructs containing different portions of the 3'-untranslated region (3'-UTR) of the gene were prepared and used in transfection experiments. Results. A 3-variant haplotype, rs763361; rs34794968; rs727088 (ATC), in the last exon of CD226 was associated with SLE (P = 1.3 x 10(-4), odds ratio 1.24, 95% confidence interval 1.11-1.38). This risk haplotype correlated with low CD226 transcript expression and low CD226 protein levels on the surface of CD4+ and CD8+ T cells and natural killer T (NKT) cells. NK cells expressed high levels of CD226, but this expression was independent of the haplotype. Reporter assays with deletion constructs indicated that only the presence of rs727088 could account for the differences in the levels of luciferase transcripts. Conclusion. This study identified an association of CD226 with SLE in individuals of European ancestry. These data support the importance of the 3'-UTR SNP rs727088 in the regulation of CD226 transcription both in T cells and in NKT cells.
  •  
43.
  • Löfgren, Sara E, et al. (author)
  • Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene
  • 2012
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 13:3, s. 268-274
  • Journal article (peer-reviewed)abstract
    • A recent genome-wide association study revealed a variant (rs2431697) in an intergenic region, between the pituitary tumor-transforming 1 (PTTG1) and microRNA (miR-146a) genes, associated with systemic lupus erythematosus (SLE) susceptibility. Here, we analyzed with a case-control design this variant and other candidate polymorphisms in this region together with expression analysis in order to clarify to which gene this association is related. The single-nucleotide polymorphisms (SNPs) rs2431697, rs2910164 and rs2277920 were genotyped by TaqMan assays in 1324 SLE patients and 1453 healthy controls of European ancestry. Genetic association was statistically analyzed using Unphased. Gene expression of PTTG1, the miRNAs miR-3142 and primary and mature forms of miR-146a in peripheral blood mononuclear cells (PBMCs) were assessed by quantitative real-time PCR. Of the three variants analyzed, only rs2431697 was genetically associated with SLE in Europeans. Gene expression analysis revealed that this SNP was not associated with PTTG1 expression levels, but with the microRNA-146a, where the risk allele correlates with lower expression of the miRNA. We replicated the genetic association of rs2341697 with SLE in a case-control study in Europeans and demonstrated that the risk allele of this SNP correlates with a downregulation of the miRNA 146a, potentially important in SLE etiology.
  •  
44.
  •  
45.
  •  
46.
  • Nakanishi, Tomoko, et al. (author)
  • Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality
  • 2021
  • In: Journal of Clinical Investigation. - : American Society For Clinical Investigation. - 0021-9738 .- 1558-8238. ; 131:23
  • Journal article (peer-reviewed)abstract
    • BACKGROUND. There is considerable variability in COVID-19 outcomes among younger adults, and some of this variation may be due to genetic predisposition. METHODS. We combined individual level data from 13,888 COVID-19 patients (n = 7185 hospitalized) from 17 cohorts in 9 countries to assess the association of the major common COVID-19 genetic risk factor (chromosome 3 locus tagged by rs10490770) with mortality, COVID-19-related complications, and laboratory values. We next performed metaanalyses using FinnGen and the Columbia University COVID-19 Biobank. RESULTS. We found that rs10490770 risk allele carriers experienced an increased risk of all-cause mortality (HR, 1.4; 95% CI, 1.2-1.7). Risk allele carriers had increased odds of several COVID-19 complications: severe respiratory failure (OR, 2.1; 95% CI, 1.6-2.6), venous thromboembolism (OR, 1.7; 95% CI, 1.2-2.4), and hepatic injury (OR, 1.5; 95% CI, 1.2-2.0). Risk allele carriers age 60 years and younger had higher odds of death or severe respiratory failure (OR, 2.7; 95% CI, 1.8-3.9) compared with those of more than 60 years (OR, 1.5; 95% CI, 1.2-1.8; interaction, P = 0.038). Among individuals 60 years and younger who died or experienced severe respiratory failure, 32.3% were risk-variant carriers compared with 13.9% of those not experiencing these outcomes. This risk variant improved the prediction of death or severe respiratory failure similarly to, or better than, most established clinical risk factors. CONCLUSIONS. The major common COVID-19 genetic risk factor is associated with increased risks of morbidity and mortality, which are more pronounced among individuals 60 years or younger. The effect was similar in magnitude and more common than most established clinical risk factors, suggesting potential implications for future clinical risk management.
  •  
47.
  • Namjou, Bahram, et al. (author)
  • High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups
  • 2009
  • In: Arthritis and Rheumatism. - : Wiley. - 0004-3591 .- 1529-0131. ; 60:4, s. 1085-1095
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disorder, with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in terms of the pathogenesis of SLE. STAT-1 and STAT-4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for involvement in SLE susceptibility. METHODS: Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 on chromosome 2 were genotyped using the Illumina platform, as part of an extensive association study in a large collection of 9,923 lupus patients and control subjects from different racial groups. DNA samples were obtained from the peripheral blood of patients with SLE and control subjects. Principal components analyses and population-based case-control association analyses were performed, and the P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated. RESULTS: We observed strong genetic associations with SLE and multiple SNPs located within STAT4 in different ethnic groups (Fisher's combined P = 7.02 x 10(-25)). In addition to strongly confirming the previously reported association in the third intronic region of this gene, we identified additional haplotypic association across STAT4 and, in particular, a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to its proximity to STAT4. CONCLUSION: Our findings indicate that STAT4 is likely to be a crucial component in SLE pathogenesis in multiple racial groups. Knowledge of the functional effects of this association, when they are revealed, might improve our understanding of the disease and provide new therapeutic targets.
  •  
48.
  •  
49.
  •  
50.
  • Abelson, Anna-Karin, et al. (author)
  • No evidence of association between genetic variants of the PDCD1 ligands and SLE
  • 2007
  • In: Genes and Immunity. - : Springer Science and Business Media LLC. - 1466-4879 .- 1476-5470. ; 8:1, s. 69-74
  • Journal article (peer-reviewed)abstract
    • PDCD1, an immunoreceptor involved in peripheral tolerance has previously been shown to be genetically associated with systemic lupus erythematosus (SLE). PDCD1 has two ligands whose genes are located in close proximity on chromosome 9p24. Our attention was drawn to these ligands after finding suggestive linkage to a marker (gata62f03, Z=2.27) located close to their genes in a genome scan of Icelandic families multiplex for SLE. Here, we analyse Swedish trios (N=149) for 23 single nucleotide polymorphisms (SNPs) within the genes of the PDCD1 ligands. Initially, indication of association to eight SNPs was observed, and these SNPs were therefore also analysed in Mexican trios (N=90), as well as independent sets of patients and controls from Sweden (152 patients, 448 controls) and Argentina (288 patients, 288 controls). We do not find support for genetic association to SLE. This is the first genetic study of SLE and the PDCD1 ligands and the lack of association in several cohorts implies that these genes are not major risk factors for SLE.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 99
Type of publication
journal article (89)
conference paper (5)
other publication (2)
research review (1)
book chapter (1)
review (1)
show more...
show less...
Type of content
peer-reviewed (85)
other academic/artistic (13)
pop. science, debate, etc. (1)
Author/Editor
Alarcón-Riquelme, Ma ... (57)
Harley, John B. (23)
Alarcon-Riquelme, ME (21)
Kelly, Jennifer A. (21)
Martin, J. (18)
Martin, Javier (18)
show more...
Kaufman, Kenneth M. (18)
James, Judith A. (17)
Gaffney, Patrick M. (17)
Merrill, Joan T. (16)
Gilkeson, Gary S. (15)
Kimberly, Robert P. (15)
Vyse, Timothy J. (15)
Witte, Torsten (14)
Pons-Estel, Bernardo ... (14)
Guthridge, Joel M. (14)
Moser, Kathy L. (13)
Jacob, Chaim O. (12)
Tsao, Betty P. (12)
Langefeld, Carl D. (12)
Delgado-Vega, Angéli ... (12)
Truedsson, Lennart (11)
Reveille, John D. (11)
Criswell, Lindsey A. (11)
Barturen, G (11)
Kozyrev, Sergey V. (10)
D'Alfonso, Sandra (10)
Witte, T (10)
Edberg, Jeffrey C. (10)
Gregersen, Peter K. (10)
Kamen, Diane L. (10)
Carnero-Montoro, E (10)
Anaya, Juan-Manuel (9)
Bae, Sang-Cheol (9)
Ramsey-Goldman, Rosa ... (9)
Scofield, R. Hal (9)
Sánchez, Elena (8)
Lessard, Christopher ... (8)
Vila, Luis M. (8)
Alarcon-Riquelme, M (8)
Petri, Michelle (8)
Alarcón, Graciela S. (8)
Sturfelt, Gunnar (7)
Ortego-Centeno, Norb ... (7)
Nordmark, Gunnel (7)
Kelly, JA (7)
James, JA (7)
Gaffney, PM (7)
Sanchez, E. (7)
Petri, M. (7)
show less...
University
Uppsala University (66)
Karolinska Institutet (57)
Lund University (16)
Linköping University (7)
Umeå University (3)
University of Gothenburg (2)
show more...
Royal Institute of Technology (2)
Örebro University (1)
show less...
Language
English (96)
Undefined language (2)
Spanish (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (27)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view