SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alis H) "

Search: WFRF:(Alis H)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Pierre, M., et al. (author)
  • The XXL Survey I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Journal article (peer-reviewed)abstract
    • Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg(2) each at a point-source sensitivity of similar to 5 x 10(-15) erg s(-1) cm(-2) in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods. We describe the 542 XMM observations along with the associated multi-lambda and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-lambda associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi-lambda data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve as a calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps.
  •  
4.
  • Jin, Shoko, et al. (author)
  • The wide-field, multiplexed, spectroscopic facility WEAVE : Survey design, overview, and simulated implementation
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 530:3, s. 2688-2730
  • Journal article (peer-reviewed)abstract
    • WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959nm at R similar to 5000, or two shorter ranges at . After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for similar to 3 million stars and detailed abundances for similar to 1.5 million brighter field and open-cluster stars; (ii) survey similar to 0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey similar to 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z < 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in field galaxies at 0.3 less than or similar to z less than or similar to 0.7; (vii) study the cosmic evolution of accretion and star formation using >1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
  •  
5.
  • Pacaud, F., et al. (author)
  • The XXL Survey II. The bright cluster sample: catalogue and luminosity function
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Research review (peer-reviewed)abstract
    • Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of similar to 2 at a sensitivity of similar to 10 (14) erg s (1) cm (2) in the [0.5-2] keV band. Aims. This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 x 10(-1)4 erg s(-1) cm(-2) on the source flux within a 1' aperture. Methods. The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results. The bright cluster sample consists of systems with masses between M-500 = 7 x 10(13) and 3 x 10(14) M-circle dot, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of sigma(8) and/or Omega(M) appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z similar to 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. ELL GO, 1989, ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, V70, P1
  •  
6.
  • Pierre, M., et al. (author)
  • The XXL survey : First results and future
  • 2017
  • In: Astronomical Notes - Astronomische Nachrichten. - : Wiley-VCH Verlagsgesellschaft. - 0004-6337 .- 1521-3994. ; 338:2-3, s. 334-341
  • Journal article (peer-reviewed)abstract
    • The XXL survey currently covers two 25 deg(2) patches with XMM observations of similar to 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view