SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Almgren J.) "

Search: WFRF:(Almgren J.)

  • Result 1-50 of 104
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mishra, A., et al. (author)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611, s. 115-123
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
2.
  • Pulit, S. L., et al. (author)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • In: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Journal article (peer-reviewed)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
3.
  • Franceschini, N., et al. (author)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
4.
  •  
5.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
6.
  • Evangelou, Evangelos, et al. (author)
  • Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:10, s. 1412-1425
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
  •  
7.
  • Lumbers, R. T., et al. (author)
  • The genomics of heart failure: design and rationale of the HERMES consortium
  • 2021
  • In: Esc Heart Failure. - : Wiley. - 2055-5822. ; 8:6, s. 5531-5541
  • Journal article (peer-reviewed)abstract
    • Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure. Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 x 10(-8) under an additive genetic model. Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction.
  •  
8.
  •  
9.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
10.
  • Heid, Iris M, et al. (author)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Journal article (peer-reviewed)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
11.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
12.
  • Lindgren, Cecilia M, et al. (author)
  • Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.
  • 2009
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:6, s. e1000508-
  • Journal article (peer-reviewed)abstract
    • To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
  •  
13.
  •  
14.
  •  
15.
  • Roselli, Carolina, et al. (author)
  • Multi-ethnic genome-wide association study for atrial fibrillation
  • 2018
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 50:9, s. 1225-1233
  • Journal article (peer-reviewed)abstract
    • Atrial fibrillation (AF) affects more than 33 million individuals worldwide(1) and has a complex heritability(2). We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.
  •  
16.
  •  
17.
  •  
18.
  • Willer, Cristen J., et al. (author)
  • Six new loci associated with body mass index highlight a neuronal influence on body weight regulation
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 25-34
  • Journal article (peer-reviewed)abstract
    • Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
  •  
19.
  • Wuttke, Matthias, et al. (author)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
20.
  • Gaulton, Kyle J, et al. (author)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Journal article (peer-reviewed)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
21.
  • Patel, Riyaz S., et al. (author)
  • Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events : A GENIUS-CHD Study of Individual Participant Data
  • 2019
  • In: Circulation. - 2574-8300. ; 12:4
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk.METHODS: A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103 357 Europeans with established CHD at baseline from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/myocardial infarction), occurred in 13 040 of the 93 115 participants with available outcome data. Effect estimates were compared with case/control risk obtained from the CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics) including 47 222 CHD cases and 122 264 controls free of CHD.RESULTS: Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline (GENIUSCHD odds ratio, 1.02; 95% CI, 0.99-1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D odds ratio 1.20; 95% CI, 1.18-1.22; P for interaction < 0.001 compared with the GENIUS-CHD estimate. Similarly, no clear associations were identified for additional subsequent outcomes, including all-cause death, although we found a modest positive association between chromosome 9p21 and subsequent revascularization (odds ratio, 1.07; 95% CI, 1.04-1.09).CONCLUSIONS: In contrast to studies comparing individuals with CHD to disease-free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development.
  •  
22.
  • Patel, Riyaz S., et al. (author)
  • Subsequent Event Risk in Individuals With Established Coronary Heart Disease : Design and Rationale of the GENIUS-CHD Consortium
  • 2019
  • In: Circulation. - 2574-8300. ; 12:4
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The Genetics of Subsequent Coronary Heart Disease (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD.METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185 614 participants with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events.RESULTS: Enrollment into the individual studies took place between 1985 to present day with a duration of follow-up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (hazard ratio, 1.15; 95% CI, 1.14-1.16) per 5-year increase, male sex (hazard ratio, 1.17; 95% CI, 1.13-1.21) and smoking (hazard ratio, 1.43; 95% CI, 1.35-1.51) with risk of subsequent CHD death or myocardial infarction and differing associations with other individual and composite cardiovascular endpoints.CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and nongenetic determinants of subsequent event risk in individuals with established CHD, to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators.
  •  
23.
  •  
24.
  •  
25.
  • Scott, Robert A., et al. (author)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Journal article (peer-reviewed)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
26.
  • Zeggini, Eleftheria, et al. (author)
  • Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  • 2008
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 638-645
  • Journal article (peer-reviewed)abstract
    • Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)(1-11). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and similar to 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P=5.0 x 10(-14)), CDC123-CAMK1D (P=1.2 x 10(-10)), TSPAN8-LGR5 (P=1.1 x 10(-9)), THADA (P=1.1 x 10(-9)), ADAMTS9 (P=1.2 x 10(-8)) and NOTCH2 (P=4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
  •  
27.
  •  
28.
  •  
29.
  • Middeldorp, Christel M., et al. (author)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • In: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Journal article (peer-reviewed)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
30.
  • Shah, S, et al. (author)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Journal article (peer-reviewed)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
31.
  • Furberg, Helena, et al. (author)
  • Genome-wide meta-analyses identify multiple loci associated with smoking behavior
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 134-441
  • Journal article (peer-reviewed)abstract
    • Consistent but indirect evidence has implicated genetic factors in smoking behavior1,2. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], b = 1.03, standard error (s.e.) = 0.053, beta = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], b = 0.367, s. e. = 0.059, beta = 5.7 x 10(-10); and rs1028936[A], b = 0.446, s. e. = 0.074, beta = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], b = 0.333, s. e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.
  •  
32.
  • Gorski, Mathias, et al. (author)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Journal article (peer-reviewed)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
33.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
34.
  • Chen, X., et al. (author)
  • A genome-wide association study of IgM antibody against phosphorylcholine: shared genetics and phenotypic relationship to chronic lymphocytic leukemia
  • 2018
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 27:10, s. 1809-1818
  • Journal article (peer-reviewed)abstract
    • Phosphorylcholine (PC) is an epitope on oxidized low-density lipoprotein (oxLDL), apoptotic cells and several pathogens like Streptococcus pneumoniae. Immunoglobulin M against PC (IgM anti-PC) has the ability to inhibit uptake of oxLDL by macrophages and increase clearance of apoptotic cells. From our genome-wide association studies (GWASs) in four European-ancestry cohorts, six single nucleotide polymorphisms (SNPs) in 11q24.1 were discovered (in 3002 individuals) and replicated (in 646 individuals) to be associated with serum level of IgM anti-PC (the leading SNP rs35923643-G, combined beta = 0.19, 95% confidence interval 0.13-0.24, P = 4.3 x 10-11). The haplotype tagged by rs35923643-G (or its proxy SNP rs735665-A) is also known as the top risk allele for chronic lymphocytic leukemia (CLL), and a main increasing allele for general IgM. By using summary GWAS results of IgM anti-PC and CLL in the polygenic risk score (PRS) analysis, PRS on the basis of IgM anti-PC risk alleles positively associated with CLL risk (explained 0.6% of CLL variance, P = 1.2 x 10-15). Functional prediction suggested that rs35923643-G might impede the binding of Runt-related transcription factor 3, a tumor suppressor playing a central role in the immune regulation of cancers. Contrary to the expectations from the shared genetics between IgM anti-PC and CLL, an inverse relationship at the phenotypic level was found in a nested case-control study (30 CLL cases with 90 age- and sex-matched controls), potentially reflecting reverse causation. The suggested function of the top variant as well as the phenotypic association between IgM anti-PC and CLL risk needs replication and motivates further studies.
  •  
35.
  • Florez, J C, et al. (author)
  • Association testing of the protein tyrosine phosphatase 1B gene (PTPN1) with type 2 diabetes in 7,883 people
  • 2005
  • In: Diabetes. - 1939-327X. ; 54:6, s. 1884-1891
  • Journal article (peer-reviewed)abstract
    • Protein tyrosine phosphatase (PTP)-1B, encoded by the PTPN1 gene, inactivates the insulin signal transduction cascade by dephosphorylating phosphotyrosine residues in insulin signaling molecules. Due to its chromosomal location under a chromosome 20 linkage peak and the metabolic effects of its absence in knockout mice, it is a candidate gene for type 2 diabetes. Recent studies have associated common sequence variants in PTPN1 with type 2 diabetes and diabetes-related phenotypes. We sought to replicate the association of common single nucleotide polymorphisms (SNPs) and haplotypes in PTPN1 with type 2 diabetes, fasting plasma glucose, and insulin sensitivity in a large collection of subjects. We assessed linkage disequilibrium, selected tag SNPs, and typed these markers in 3,347 cases of type 2 diabetes and 3,347 control subjects as well as 1,189 siblings discordant for type 2 diabetes. Despite power estimated at > 95% to replicate the previously reported associations, no statistically significant evidence of association was observed between PTPN1 SNPs or common haplotypes with type 2 diabetes or with diabetic phenotypes.
  •  
36.
  • Lubitz, Steven A, et al. (author)
  • Genetic Risk Prediction of Atrial Fibrillation
  • 2017
  • In: Circulation. - 0009-7322. ; 135:14, s. 1311-1320
  • Journal article (peer-reviewed)abstract
    • BACKGROUND—: Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke. METHODS—: To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10 to <1x10 in a prior independent genetic association study. RESULTS—: Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01). CONCLUSIONS—: Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms.
  •  
37.
  • Florez, J. C., et al. (author)
  • Association testing of common variants in the insulin receptor substrate-1 gene (IRS1) with type 2 diabetes
  • 2007
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:6, s. 1209-1217
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis Activation of the insulin receptor substrate-1 (IRS1) is a key initial step in the insulin signalling pathway. Despite several reports of association of the G972R polymorphism in its gene IRS1 with type 2 diabetes, we and others have not observed this association in well-powered samples. However, other nearby variants might account for the putative association signal. Subjects and methods We characterised the haplotype map of IRS1 and selected 20 markers designed to capture common variations in the region. We genotyped this comprehensive set of markers in several family-based and case-control samples of European descent totalling 12,129 subjects. Results In an initial sample of 2,235 North American and Polish case-control pairs, the minor allele of the rs934167 polymorphism showed nominal evidence of association with type 2 diabetes (odds ratio [OR] 1.25, 95% CI 1.03-1.51, p=0.03). This association showed a trend in the same direction in 7,659 Scandinavian samples (OR 1.16, 95% CI 0.96-1.39, p=0.059). The combined OR was 1.20 (p=0.008), but statistical correction for the number of variants examined yielded a p value of 0.086. We detected no differences across rs934167 genotypes in insulin-related quantitative traits. Conclusion/interpretation Our data do not support an association of common variants in IRS1 with type 2 diabetes in populations of European descent.
  •  
38.
  •  
39.
  •  
40.
  • Winckler, W, et al. (author)
  • Association of common variation in the HNF1 alpha gene region with risk of type 2 diabetes
  • 2005
  • In: Diabetes. - 1939-327X. ; 54:8, s. 2336-2342
  • Journal article (peer-reviewed)abstract
    • It is currently unclear how often genes that are mutated to cause rare, early-onset monogenic forms of disease also harbor common variants that contribute to the more typical polygenic form of each disease. The gene for MODY3 diabetes, HNF1 alpha, lies in a region that has shown linkage to late-onset type 2 diabetes (12q24, NIDDM2), and previous association studies have suggested a weak trend toward association for common missense variants in HNF1a with glucose-related traits. Based on genotyping of 79 common SNPs in the 118 kb spanning HNF1 alpha, we selected 21 haplotype tag single nucleotide polymorphisms (SNPs) and genotyped them in > 4,000 diabetic patients and control subjects from Sweden, Finland, and Canada. Several SNPs from the coding region and 5' of the gene demonstrated nominal association with type 2 diabetes, with the most significant marker (rs1920792) having an odds ratio of 1.17 and a P value of 0.002. We then genotyped three SNPs with the strongest evidence for association to type 2 diabetes (rs1920792, I27L, and A98V) in an additional 4,400 type 2 diabetic and control subjects from North America and Poland and compared our results with those of the original sample and of Weedon et al. None of the results were consistently observed across all samples, with the possible exception of a modest association of the rare (3-5%) A98V variant. These results indicate that common variants in HNF1 alpha either play no role in type 2 diabetes, a very small role, or a role that cannot be consistently observed without consideration of as yet unmeasured genetic or environmental modifiers.
  •  
41.
  • Winckler, W, et al. (author)
  • Association testing of variants in the hepatocyte nuclear factor 4 alpha gene with risk of type 2 diabetes in 7,883 people
  • 2005
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 54:3, s. 886-892
  • Journal article (peer-reviewed)abstract
    • Two recent publications reported association of common polymorphisms in the P2 promoter of hepatocyte nuclear factor 4alpha (HNF4alpha) (the MODY1 gene) with risk for type 2 diabetes. We attempted to reproduce this putative association by genotyping 11 single nucleotide polymorphism (SNPs) spanning the HNF4a coding region and the P2 promoter in >3,400 patients and control subjects from Sweden, Finland, and Canada. One SNP that was consistently associated in the two previous reports (rs1884613, in the P2 promoter region) also trended in the same direction in our sample, albeit with a lower estimated odds ratio (OR) of 1.11 (P = 0.05, one-tailed). We genotyped this SNP (rs1884613) in an additional 4,400 subjects from North America and Poland. In this sample, the association was not confirmed and trended in the opposite direction (OR 0.88). Meta-analysis of our combined sample of 7,883 people (three times larger than the two initial reports combined) yielded an OR of 0.97 (P = 0.27). Finally, we provide an updated analysis of haplotype structure in the region to guide any further investigation of common variation in HNF4alpha. Although our combined results fail to replicate the previously reported association of common variants in HNF4alpha with risk for type 2 diabetes, we cannot exclude an effect smaller than that originally proposed, heterogeneity among samples, variation in as-yet-unmeasured genotypic or environmental modifiers, or true association secondary to linkage disequilibrium (LD) with as-yet-undiscovered variant(s) in the region.
  •  
42.
  •  
43.
  • Almgren, Mats, et al. (author)
  • Nonideal Mixed Micelles of Fluorinated and Hydrogenous Surfactants in Aqueous Solution. NMR and SANS Studies of Anionic and Nonionic Systems
  • 2010
  • In: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 26:8, s. 5355-5363
  • Journal article (peer-reviewed)abstract
    • Contrast variation SANS and F-19 chemical shifts were measured for three mixed equimolar micelle systems: sodium perfluorooctanoate (SPED) and sodiumdecylsulfate (SDeS) in 200 mM NaCl, lithium perlluorononanate LiPFN) and lithium dodecylsulfate (Li DS) in 200 mM LiCl, and a nonionic system C8F17C2H4(OC2H4)(9) and C12H25(OC2H4)(8) in water, all at 25 C. The chemical shift measurements allow the calculation of the average fraction of nearest neighbors of each kind around the reporter group (the trifluoromethyl group). A preference for like neighbors were found in all systems, smallest in the SDeS/SPFO system and largest in the nonionic system, but in all cases substantially smaller than expected at critical conditions. From the SANS measurements the width of the micelle composition distribution was obtained. For the ionic systems similar values were obtained, showing a broadening compared to ideal mixtures, but not broad enough for demixing or clearly bimodal distributions. In the nonionic system the width was estimated as sigma = 0.18 and 0.22 using two different evaluation methods. These values suggest that the system is close to critical conditions. The lower value refers to a direct modeling of the system, assuming an ellipsoidal shape and a Gaussian composition distribution. The modeling showed the nonionic mixed micelles to be prolate ellipsoids with axial ratio 2.2 and an aggregation number larger than 100. whereas the two ionic systems fitted best to oblate shapes (axial ratios 0.8 and 0.65 for SDeS/SPFO and LiDS/LiPFN. respectively) and aggregation numbers of 60 for both.
  •  
44.
  • Björkbacka, H, et al. (author)
  • Plasma stem cell factor levels are associated with risk of cardiovascular disease and death
  • 2017
  • In: Journal of Internal Medicine. - : Wiley. - 1365-2796 .- 0954-6820. ; 282:6, s. 508-521
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Stem cell factor (SCF) is a key growth factor for several types of stem and progenitor cells. There is experimental evidence that such cells are of importance for maintaining the integrity of the cardiovascular system. We investigated the association between circulating levels of SCF and risk for development of cardiovascular events and death.METHODS: SCF was analysed by the proximity extension assay technique in plasma from 4742 subjects participating in the Malmö Diet and Cancer Study. Cardiovascular events and death were monitored through national registers with a mean follow-up time of 19.2 years.RESULTS: Subjects with high baseline levels of SCF had lower cardiovascular (n = 340) and all-cause mortality (n = 1159) as well as a lower risk of heart failure (n = 177), stroke (n = 318) and myocardial infarction (n = 452). Smoking, diabetes and high alcohol consumption were associated with lower levels of SCF. Single nucleotide polymorphisms in the gene region encoding PDX1 C-terminal inhibiting factor 1 (PCIF1) and matrix metalloproteinase-9 were associated with plasma SCF levels. The highest SCF quartile remained independently associated with a lower risk of a lower risk of cardiovascular [hazard ratio and 95% confidence interval 0.59 (0.43-0.81)] and all-cause mortality [0.68 (0.57-0.81)], heart failure [0.50 (0.31-0.80)] and stroke [0.66 (0.47-0.92)], but not with MI [0.96 (0.72-1.27)] as compared with the lowest quartile when adjusting for traditional cardiovascular risk factors in Cox proportional hazard regression models.CONCLUSIONS: This prospective population-based study demonstrates that subjects with high levels of SCF have a lower risk of cardiovascular events and death. The findings provide clinical support for a protective role of SCF in maintaining cardiovascular integrity.
  •  
45.
  • Fernandez, C., et al. (author)
  • Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality
  • 2018
  • In: Journal of Internal Medicine. - : Wiley. - 0954-6820. ; 284:4, s. 377-387
  • Journal article (peer-reviewed)abstract
    • Background: Diabetes mellitus is linked to premature mortality of virtually all causes. Furin is a proprotein convertase broadly involved in the maintenance of cellular homeostasis; however, little is known about its role in the development of diabetes mellitus and risk of premature mortality. Objectives: To test if fasting plasma concentration of furin is associated with the development of diabetes mellitus and mortality. Methods: Overnight fasted plasma furin levels were measured at baseline examination in 4678 individuals from the population-based prospective Malmö Diet and Cancer Study. We studied the relation of plasma furin levels with metabolic and hemodynamic traits. We used multivariable Cox proportional hazards models to investigate the association between baseline plasma furin levels and incidence of diabetes mellitus and mortality during 21.3–21.7 years follow-up. Results: An association was observed between quartiles of furin concentration at baseline and body mass index, blood pressure and plasma concentration of glucose, insulin, LDL and HDL cholesterol (|0.11| ≤ β ≤ |0.31|, P < 0.001). Plasma furin (hazard ratio [HR] per one standard deviation increment of furin) was predictive of future diabetes mellitus (727 events; HR = 1.24, CI = 1.14–1.36, P < 0.001) after adjustment for age, sex, body mass index, systolic and diastolic blood pressure, use of antihypertensive treatment, alcohol intake and fasting plasma level of glucose, insulin and lipoproteins cholesterol. Furin was also independently related to the risk of all-cause mortality (1229 events; HR = 1.12, CI = 1.05–1.19, P = 0.001) after full multivariable adjustment. Conclusion: Individuals with high plasma furin concentration have a pronounced dysmetabolic phenotype and elevated risk of diabetes mellitus and premature mortality.
  •  
46.
  • Florez, Jose C., et al. (author)
  • Haplotype Structure and Genotype-Phenotype Correlations of the Sulfonylurea Receptor and the Islet ATP-Sensitive Potassium Channel Gene Region.
  • 2004
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 53:5, s. 1360-1368
  • Journal article (peer-reviewed)abstract
    • The genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.2 with risk of type 2 diabetes. Whether and how E23K itself—or other variant(s) in either of these two closely linked genes—influences type 2 diabetes remains to be fully determined. To better understand genotype-phenotype correlation at this important candidate gene locus, we 1) characterized haplotype structures across the gene region by typing 77 working, high-frequency markers spanning 207 kb and both genes; 2) performed association studies of E23K and nearby markers in &gt;3,400 patients (type 2 diabetes and control) not previously reported in the literature; and 3) analyzed the resulting data for measures of insulin secretion. These data independently replicate the association of E23K with type 2 diabetes with an odds ratio (OR) in the new data of 1.17 (P = 0.003) as compared with an OR of 1.14 provided by meta-analysis of previously published, nonoverlapping data (P = 0.0002). We find that the E23K variant in Kir6.2 demonstrates very strong allelic association with a coding variant (A1369S) in the neighboring SUR1 gene (r2 &gt; 0.9) across a range of population samples, making it difficult to distinguish which gene and polymorphism in this region are most likely responsible for the reported association. We show that E23K is also associated with decreased insulin secretion in glucose-tolerant control subjects, supporting a mechanism whereby β-cell dysfunction contributes to the common form of type 2 diabetes. Like peroxisome proliferator–activated receptor γ, the SUR1/Kir6.2 gene region both contributes to the inherited risk of type 2 diabetes and encodes proteins that are targets for hypoglycemic medications, providing an intriguing link between the underlying mechanism of disease and validated targets for pharmacological treatment.
  •  
47.
  •  
48.
  • Helgadottir, Anna, et al. (author)
  • Genome-wide analysis yields new loci associating with aortic valve stenosis
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Aortic valve stenosis (AS) is the most common valvular heart disease, and valve replacement is the only definitive treatment. Here we report a large genome-wide association (GWA) study of 2,457 Icelandic AS cases and 349,342 controls with a follow-up in up to 4,850 cases and 451,731 controls of European ancestry. We identify two new AS loci, on chromosome 1p21 near PALMD (rs7543130; odds ratio (OR) = 1.20, P = 1.2 × 10-22) and on chromosome 2q22 in TEX41 (rs1830321; OR = 1.15, P = 1.8 × 10-13). Rs7543130 also associates with bicuspid aortic valve (BAV) (OR = 1.28, P = 6.6 × 10-10) and aortic root diameter (P = 1.30 × 10-8), and rs1830321 associates with BAV (OR = 1.12, P = 5.3 × 10-3) and coronary artery disease (OR = 1.05, P = 9.3 × 10-5). The results implicate both cardiac developmental abnormalities and atherosclerosis-like processes in the pathogenesis of AS. We show that several pathways are shared by CAD and AS. Causal analysis suggests that the shared risk factors of Lp(a) and non-high-density lipoprotein cholesterol contribute substantially to the frequent co-occurence of these diseases.
  •  
49.
  • Isomaa, B., et al. (author)
  • A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study
  • 2010
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 53:8, s. 1709-1713
  • Journal article (peer-reviewed)abstract
    • We studied the impact of a family history of type 2 diabetes on physical fitness, lifestyle factors and diabetes-related metabolic factors. The Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study is a population-based study in Western Finland, which includes a random sample of 5,208 individuals aged 18 to 75 years identified through the national Finnish Population Registry. Physical activity, dietary habits and family history of type 2 diabetes were assessed by questionnaires and physical fitness by a validated 2 km walking test. Insulin secretion and action were assessed based upon OGTT measurements of insulin and glucose. A family history of type 2 diabetes was associated with a 2.4-fold risk of diabetes and lower physical fitness (maximal aerobic capacity 29.2 +/- 7.2 vs 32.1 +/- 7.0, p = 0.01) despite having similar reported physical activity to that of individuals with no family history. The same individuals also had reduced insulin secretion adjusted for insulin resistance, i.e. disposition index (p < 0.001) despite having higher BMI (27.4 +/- 4.6 vs 26.0 +/- 4.3 kg/m(2), p < 0.001). Individuals with a family history of type 2 diabetes are characterised by lower physical fitness, which cannot solely be explained by lower physical activity. They also have an impaired capacity of beta cells to compensate for an increase in insulin resistance imposed by an increase in BMI. These defects should be important targets for interventions aiming at preventing type 2 diabetes in individuals with inherited susceptibility to the disease.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 104
Type of publication
journal article (96)
conference paper (5)
book chapter (3)
Type of content
peer-reviewed (97)
other academic/artistic (7)
Author/Editor
Almgren, Peter (56)
Melander, Olle (34)
Groop, Leif (33)
Almgren, M (24)
Lind, Lars (20)
Tuomi, Tiinamaija (18)
show more...
Boerwinkle, Eric (16)
Lindgren, Cecilia M. (15)
McCarthy, Mark I (14)
Boehnke, Michael (14)
Mohlke, Karen L (14)
Loos, Ruth J F (14)
Frayling, Timothy M (14)
Morris, Andrew P. (14)
Wareham, Nicholas J. (13)
Tuomilehto, Jaakko (13)
Salomaa, Veikko (12)
Trompet, S (12)
Almgren, P. (12)
Melander, O. (12)
Thorleifsson, Gudmar (12)
Stefansson, Kari (12)
Hattersley, Andrew T (12)
Lind, L (12)
van der Harst, P (12)
Hirschhorn, Joel N. (12)
Ingelsson, Erik, 197 ... (12)
Lyssenko, Valeriya (11)
Laakso, Markku (11)
Hamsten, Anders (11)
Thorsteinsdottir, Un ... (11)
Luan, Jian'an (11)
Altshuler, David (11)
Newton-Cheh, Christo ... (11)
Uitterlinden, André ... (11)
Prokopenko, Inga (11)
Jackson, Anne U. (11)
Langenberg, C. (10)
Isomaa, Bo (10)
Boerwinkle, E (10)
van Duijn, Cornelia ... (10)
Rotter, Jerome I. (10)
Gieger, Christian (10)
Salomaa, V (10)
Gustafsson, Stefan (10)
Metspalu, Andres (10)
Hofman, Albert (10)
Psaty, Bruce M (10)
Collins, Francis S. (10)
Steinthorsdottir, Va ... (10)
show less...
University
Lund University (58)
Uppsala University (40)
Karolinska Institutet (38)
University of Gothenburg (15)
Umeå University (7)
Karlstad University (7)
show more...
Stockholm University (4)
Chalmers University of Technology (4)
Högskolan Dalarna (4)
Linköping University (3)
Örebro University (2)
Royal Institute of Technology (1)
Stockholm School of Economics (1)
Mid Sweden University (1)
RISE (1)
Swedish National Heritage Board (1)
show less...
Language
English (103)
Swedish (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (71)
Natural sciences (20)
Engineering and Technology (1)
Agricultural Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view