SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Amaro Seoane Pau) "

Search: WFRF:(Amaro Seoane Pau)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Amaro-Seoane, Pau, et al. (author)
  • Astrophysics with the Laser Interferometer Space Antenna
  • 2023
  • In: Living Reviews in Relativity. - : Springer Science and Business Media LLC. - 1433-8351. ; 26
  • Research review (peer-reviewed)abstract
    • The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.
  •  
2.
  • Arca Sedda, Manuel, et al. (author)
  • The missing link in gravitational-wave astronomy A summary of discoveries waiting in the decihertz range
  • 2021
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51, s. 1427-1440
  • Journal article (peer-reviewed)abstract
    • Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the similar to 10-10(3) Hz band of ground-based observatories and the similar to 10(-4)-10(- 1) Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass (similar to 10(2)-10(4)M(circle dot)) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.
  •  
3.
  • Barack, Leor, et al. (author)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • In: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Research review (peer-reviewed)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
4.
  • Sedda, Manuel Arca, et al. (author)
  • The missing link in gravitational-wave astronomy : discoveries waiting in the decihertz range
  • 2020
  • In: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 37:21
  • Journal article (peer-reviewed)abstract
    • The gravitational-wave astronomical revolution began in 2015 with LIGO's observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like laser interferometer gravitational-wave observatory (LIGO), Virgo and KAGRA will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-basedlaser interferometer space antenna(LISA) will enable gravitational-wave observations of the massive black holes in galactic centres. Between ground-based observatories and LISA lies the unexplored dHz gravitational-wave frequency band. Here, we show the potential of adecihertz observatory(DO) which could cover this band, and complement discoveries made by other gravitational-wave observatories. The dHz range is uniquely suited to observation of intermediate-mass (similar to 10(2)-10(4)M(circle dot)) black holes, which may form the missing link between stellar-mass and massive black holes, offering an opportunity to measure their properties. DOs will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing dHz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity (GR) and the standard model of particle physics. Overall, a DO would answer outstanding questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology.
  •  
5.
  • Stein, Robert, et al. (author)
  • Neutrino follow-up with the Zwicky transient facility : results from the first 24 campaigns
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:4, s. 5046-5063
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) performs a systematic neutrino follow-up programme, searching for optical counterparts to high-energy neutrinos with dedicated Target-of-Opportunity (ToO) observations. Since first light in March 2018, ZTF has taken prompt observations for 24 high-quality neutrino alerts from the IceCube Neutrino Observatory, with a median latency of 12.2 h from initial neutrino detection. From two of these campaigns, we have already reported tidal disruption event (TDE) AT 2019dsg and likely TDE AT 2019fdr as probable counterparts, suggesting that TDEs contribute >7.8 per cent of the astrophysical neutrino flux. We here present the full results of our programme through to December 2021. No additional candidate neutrino sources were identified by our programme, allowing us to place the first constraints on the underlying optical luminosity function of astrophysical neutrino sources. Transients with optical absolutes magnitudes brighter that -21 can contribute no more than 87 per cent of the total, while transients brighter than -22 can contribute no more than 58 per cent of the total, neglecting the effect of extinction and assuming they follow the star formation rate. These are the first observational constraints on the neutrino emission of bright populations such as superluminous supernovae. None of the neutrinos were coincident with bright optical AGN flares comparable to that observed for TXS 0506+056/IC170922A, with such optical blazar flares producing no more than 26 per cent of the total neutrino flux. We highlight the outlook for electromagnetic neutrino follow-up programmes, including the expected potential for the Rubin Observatory.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view