SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ambus P.) "

Search: WFRF:(Ambus P.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fowler, D., et al. (author)
  • Atmospheric composition change : Ecosystems-Atmosphere interactions
  • 2009
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:33, s. 5193-5267
  • Research review (peer-reviewed)abstract
    • Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles in the size range 1 nm-10 mu m including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean-atmosphere exchange are included. The material presented is biased towards the last decade, but includes earlier work, where more recent developments are limited or absent. New methodologies and instrumentation have enabled, if not driven technical advances in measurement. These developments have advanced the process understanding and upscaling of fluxes, especially for particles, VOC and NH3. Examples of these applications include mass spectrometric methods, such as Aerosol Mass Spectrometry (AMS) adapted for field measurement of atmosphere-surface fluxes using micrometeorological methods for chemically resolved aerosols. Also briefly described are some advances in theory and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O-3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement at a continental scale within the NitroEurope network represents a quantum development in the application of research teams to address the underpinning science of reactive nitrogen in the cycling between ecosystems and the atmosphere in Europe. Some important developments of the science have been applied to assist in addressing policy questions, which have been the main driver of the research agenda, while other developments in understanding have not been applied to their wider field especially in chemistry-transport models through deficiencies in obtaining appropriate data to enable application or inertia within the modelling community. The paper identifies applications, gaps and research questions that have remained intractable at least since 2000 within the specialized sections of the paper, and where possible these have been focussed on research questions for the coming decade. 
  •  
2.
  • Mikkelsen, T N, et al. (author)
  • Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project
  • 2008
  • In: Functional Ecology. - : Wiley. - 1365-2435 .- 0269-8463. ; 22:1, s. 185-195
  • Journal article (peer-reviewed)abstract
    • Recent findings indicate that the interactions among CO2, temperature and water can be substantial, and that the combined effects on the biological systems of several factors may not be predicted from experiments with one or a few factors. Therefore realistic multifactorial experiments involving a larger set of main factors are needed. We describe a new Danish climate change-related field scale experiment, CLIMAITE, in a heath/grassland ecosystem. CLIMAITE is a full factorial combination of elevated CO2, elevated temperature and prolonged summer drought. The manipulations are intended to mimic anticipated major environmental changes at the site by year 2075 as closely as possible. The impacts on ecosystem processes and functioning (at ecophysiological levels, through responses by individuals and communities to ecosystem-level responses) are investigated simultaneously. The increase of [CO2] closely corresponds with the scenarios for year 2075, while the warming treatment is at the lower end of the predictions and seems to be the most difficult treatment to increase without unwanted side effects on the other variables. The drought treatment follows predictions of increased frequency of drought periods in summer. The combination of the treatments does not create new unwanted side effects on the treatments relative to the treatments alone.
  •  
3.
  • Björsne, Anna-Karin, 1983, et al. (author)
  • Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands
  • 2014
  • In: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 120:1-3, s. 191-201
  • Journal article (peer-reviewed)abstract
    • The ongoing climate change affects biogeochemical cycling in terrestrial ecosystems, but the magnitude and direction of this impact is yet unclear. To shed further light on the climate change impact, we investigated alterations in the soil nitrogen (N) cycling in a Danish heathland after 5 years of exposure to three climate change factors, i.e. warming, elevated CO2 (eCO(2)) and summer drought, applied both in isolation and in combination. By conducting laboratory N-15 tracing experiments we show that warming increased both gross N mineralization and nitrification rates. In contrast, gross nitrification was decreased by eCO(2), an effect that was more pronounced when eCO(2) was combined with warming and drought. Moreover, there was an interactive effect between the warming and CO2 treatment, especially for N mineralization: rates increased at warming alone but decreased at warming combined with eCO(2). In the full treatment combination, simulating the predicted climate for the year 2075, gross N transformations were only moderately affected compared to control, suggesting a minor alteration of the N cycle due to climate change. Overall, our study confirms the importance of multifactorial field experiments for a better understanding of N cycling in a changing climate, which is a prerequisite for more reliable model predictions of ecosystems responses to climate change.
  •  
4.
  • Rasmussen, L. H., et al. (author)
  • Modelling impacts of lateral N flows and seasonal warming on an arctic footslope ecosystem N budget and N2O emissions based on species-level responses
  • 2022
  • In: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 158:2, s. 195-213
  • Journal article (peer-reviewed)abstract
    • Future Arctic tundra primary productivity and vegetation community composition will partly be determined by nitrogen (N) availability in a warmer climate. N mineralization rates are predicted to increase in both winter and summer, but because N demand and –mobility varies across seasons, the fate of mineralized N remains uncertain. N mineralized in winter is released in a “pulse” upon snowmelt and soil thaw, with the potential for lateral redistribution in the landscape. In summer, the release is into an active rhizosphere with high local biological N demand. In this study, we investigated the ecosystem sensitivity to increased lateral N input and near-surface warming, respectively and in combination, with a numerical ecosystem model (CoupModel) parameterized to simulate ecosystem biogeochemistry for a tundra heath ecosystem in West Greenland. Both measurements and model results indicated that plants were poor utilizers of increased early-season lateral N input, indicating that higher winter N mineralization rates may have limited impact on plant growth and carbon (C) sequestration for a hillslope ecosystem. The model further suggested that, although deciduous shrubs were the plant type with overall most lateral N gain, evergreen shrubs appear to have a comparative advantage utilizing early-season N. In contrast, near-surface summer warming increased plant biomass and N uptake, moving N from soil to plant N pools, and offered an advantage to deciduous plants. Neither simulated high lateral N fluxes nor near-surface soil warming suggests that mesic tundra heaths will be important sources of N2O under warmer conditions. Our work highlights how winter and summer warming may play different roles in tundra ecosystem N and C budgets depending on plant community composition.
  •  
5.
  • Rasmussen, Laura Helene, 1990, et al. (author)
  • Nitrogen immobilization could link extreme winter warming events to Arctic browning
  • 2024
  • In: Soil Biology and Biochemistry. - 0038-0717. ; 191
  • Journal article (peer-reviewed)abstract
    • Arctic extreme winter warming events (WW events) have increased in frequency with climate change. WW events have been linked to damaged tundra vegetation (“Arctic browning”), but the mechanisms that link episodic winter thaw to plant damage in summer are not fully understood. We suggest that one mechanism is microbial N immobilization during the WW event, which leads to a smaller release of winter-mineralized N in spring and therefore more N limitation for vegetation in summer. We tested this hypothesis in a Western Greenlandic Low arctic tundra, where we experimentally simulated a 6 day field-scale extreme WW event and 1) used stable isotopes to trace the movement of N as a consequence of the WW event, 2) measured the effect of a WW event on spring N release in top soils in the laboratory, and 3) measured the carry-over effect on summer aboveground vegetation C/N ratio in tundra subject to a WW event. Our results show that soil mineral N released by a WW event followed by soil thaw is taken up by microbes and stored in the soil, whereas vascular plants acquired almost none, and significant amounts were lost to leaching and gaseous emissions. As soils thawed in spring, we saw weak but not significant evidence (P = 0.067) for a larger N release over the first month of spring thaw in Control soils compared to WW event soils, although not significantly. A weak signal (P = 0.07) linked WW event treatment to higher summer C/N ratios in evergreen shrubs, whereas deciduous shrubs were not affected. We conclude that our results did not show significant evidence for WW events causing Arctic browning via N immobilization and summer N limitation, but that we had indications (P < 0.1) which merits further testing of the theory in various tundra types and with repeated WW events. Evergreen shrubs could be especially sensitive to winter N immobilization, with implications for future vegetation community composition and tundra C storage.
  •  
6.
  • Rasmussen, L. H., et al. (author)
  • Nitrogen transport in a tundra landscape : the effects of early and late growing season lateral N inputs on arctic soil and plant N pools and N2O fluxes
  • 2022
  • In: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 157:1, s. 69-84
  • Journal article (peer-reviewed)abstract
    • Understanding N budgets of tundra ecosystems is crucial for projecting future changes in plant community composition, greenhouse gas balances and soil N stocks. Winter warming can lead to higher tundra winter nitrogen (N) mineralization rates, while summer warming may increase both growing season N mineralization and plant N demand. The undulating tundra landscape is inter-connected through water and solute movement on top of and within near-surface soil, but the importance of lateral N fluxes for tundra N budgets is not well known. We studied the size of lateral N fluxes and the fate of lateral N input in the snowmelt period with a shallow thaw layer, and in the late growing season with a deeper thaw layer. We used 15N to trace inorganic lateral N movement in a Low-arctic mesic tundra heath slope in West Greenland and to quantify the fate of N in the receiving area. We found that half of the early-season lateral N input was retained by the receiving ecosystem, whereas half was transported downslope. Plants appear as poor utilizers of early-season N, indicating that higher winter N mineralization may influence plant growth and carbon (C) sequestration less than expected. Still, evergreen plants were better at utilizing early-season N, highlighting how changes in N availability may impact plant community composition. In contrast, later growing season lateral N input was deeper and offered an advantage to deeper-rooted deciduous plants. The measurements suggest that N input driven by future warming at the study site will have no significant impact on the overall N2O emissions. Our work underlines how tundra ecosystem N allocation, C budgets and plant community composition vary in their response to lateral N inputs, which may help us understand future responses in a warmer Arctic.
  •  
7.
  • Rasmussen, Laura Helene, 1990, et al. (author)
  • Normalizing time in terms of space: What drives the fate of spring thaw-released nitrogen in a sloping Arctic landscape?
  • 2022
  • In: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 175
  • Journal article (peer-reviewed)abstract
    • In the Arctic tundra, snowmelt is followed by soil thaw allowing water and dissolved nutrients to move downslope. However, the fate of the released nitrogen (N) remains unclear, which includes the fraction of N that is lost to downslope transport or converted to N gasses. We have quantified the release of NO3- into the soil solution and the loss of gaseous N upon thaw and up to a month after first thaw in an Arctic hillslope in W Greenland. We further investigated which factors of the slope ecosystem that influence the NO3- concentrations and N2O fluxes throughout two snowmelt and growing seasons using a Structural Equation Model (SEM) linking physical, biological and biogeochemical characteristics across the slope. Snowmelt controls growing season onset, but varies in the landscape. To account for this, we normalized the spatiotemporal variation in snowmelt and soil thaw by measuring NO3- release and N2O loss in a controlled laboratory thaw experiment with topsoil cores from along the slope. We furthermore normalized seasonal progression of ecosystem variables in space based on the first day of soil thaw in the field. We tested the variable Day After Soil Thaw (DAST) as the temporal driver in our SEM, and found that season progression is the most important factor to describe patterns in NO3- concentrations and N2O fluxes. We conclude that DAST is a useful tool for analysing seasonal patterns in a spatially heterogeneous snowmelt landscape and between different snowmelt years. When normalizing based on first day of soil thaw, we saw that the decreasing NO3- content over the season did not control the increasing N2O emissions. Rather, nitrification replaced denitrification as the main N2O -source during the growing season, where soil temperatures increased and soil moisture decreased. The gaseous N loss from the slope during the first month of thaw was minor and amounted to 1% of the annual N deposition. A NO3- pulse released into solution after 24 h of thaw, when meltwater moves along the slope and connects upslope with downslope ecosystems, thus constituted a "hot moment" for interaction between landscape N pools, but the NO3- was immobilized by microorganisms or taken up by plants rather than denitrified and did thus not constitute a hot moment for N2O emissions. Thus, our results regarding what drives the fate of spring-thaw released N in the sloping Arctic landscape highlight the importance of snowmelt timing and the following number of Day After Soil Thaw as a normalizing factor for biogeochemical processes. This provides an analytical concept for reducing spatial and inter-annual variability to understand general seasonal patterns otherwise hidden.
  •  
8.
  • Wild, Birgit, et al. (author)
  • Resistance of soil protein depolymerization rates to eight years of elevated CO2, warming, and summer drought in a temperate heathland
  • 2018
  • In: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 140:3, s. 255-267
  • Journal article (peer-reviewed)abstract
    • Soil N availability for plants and microorganisms depends on the breakdown of soil polymers such as proteins into smaller, assimilable units by microbial extracellular enzymes. Changing climatic conditions are expected to alter protein depolymerization rates over the next decades, and thereby affect the potential for plant productivity. We here tested the effect of increased CO2 concentration, temperature, and drought frequency on gross rates of protein depolymerization, N mineralization, microbial amino acid and ammonium uptake using N-15 pool dilution assays. Soils were sampled in fall 2013 from the multifactorial climate change experiment CLIMAITE that simulates increased CO2 concentration, temperature, and drought frequency in a fully factorial design in a temperate heathland. Eight years after treatment initiation, we found no significant effect of any climate manipulation treatment, alone or in combination, on protein depolymerization rates. Nitrogen mineralization, amino acid and ammonium uptake showed no significant individual treatment effects, but significant interactive effects of warming and drought. Combined effects of all three treatments were not significant for any of the measured parameters. Our findings therefore do not suggest an accelerated release of amino acids from soil proteins in a future climate at this site that could sustain higher plant productivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view