SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ammann B) "

Search: WFRF:(Ammann B)

  • Result 1-37 of 37
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Serge, M. A., et al. (author)
  • Testing the Effect of Relative Pollen Productivity on the REVEALS Model : A Validated Reconstruction of Europe-Wide Holocene Vegetation
  • 2023
  • In: Land. - : MDPI. - 2073-445X. ; 12:5
  • Journal article (peer-reviewed)abstract
    • Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1 degrees x 1 degrees) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.
  •  
3.
  • Groenendijk, M., et al. (author)
  • Seasonal variation of photosynthetic model parameters and leaf area index from global Fluxnet eddy covariance data
  • 2011
  • In: Journal of Geophysical Research. - 2156-2202. ; 116, s. 04027-04027
  • Journal article (peer-reviewed)abstract
    • Global vegetation models require the photosynthetic parameters, maximum carboxylation capacity (V(cm)), and quantum yield (alpha) to parameterize their plant functional types (PFTs). The purpose of this work is to determine how much the scaling of the parameters from leaf to ecosystem level through a seasonally varying leaf area index (LAI) explains the parameter variation within and between PFTs. Using Fluxnet data, we simulate a seasonally variable LAI(F) for a large range of sites, comparable to the LAI(M) derived from MODIS. There are discrepancies when LAI(F) reach zero levels and LAI(M) still provides a small positive value. We find that temperature is the most common constraint for LAI(F) in 55% of the simulations, while global radiation and vapor pressure deficit are the key constraints for 18% and 27% of the simulations, respectively, while large differences in this forcing still exist when looking at specific PFTs. Despite these differences, the annual photosynthesis simulations are comparable when using LAI(F) or LAIM (r(2) = 0.89). We investigated further the seasonal variation of ecosystem-scale parameters derived with LAI(F). V(cm) has the largest seasonal variation. This holds for all vegetation types and climates. The parameter alpha is less variable. By including ecosystem-scale parameter seasonality we can explain a considerable part of the ecosystem-scale parameter variation between PFTs. The remaining unexplained leaf-scale PFT variation still needs further work, including elucidating the precise role of leaf and soil level nitrogen.
  •  
4.
  • Kulmala, M., et al. (author)
  • General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales
  • 2011
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 13061-13143
  • Journal article (peer-reviewed)abstract
    • In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  •  
5.
  •  
6.
  • Ammann, B, et al. (author)
  • The Würmian Late-glacial in lowland Switzerland
  • 1994
  • In: Journal of Quaternary Science. - : Wiley. - 0267-8179 .- 1099-1417. ; 9:2, s. 119-125
  • Journal article (peer-reviewed)abstract
    • A synthesis is provided of Late-glacial (14-9 ka BP) environmental changes in lowland Switzerland (the 'Swiss Plateau'). The chronology of deglaciation and subsequent developments in vegetation cover in the area are summarised. The sequence of climatic variations experienced in the region during the Late-glacial is then described and a curve representing the main palaeotemperature variations is presented.
  •  
7.
  •  
8.
  •  
9.
  • Maisonneuve, P, et al. (author)
  • Cigarette smoking accelerates progression of alcoholic chronic pancreatitis
  • 2005
  • In: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 54:4, s. 510-514
  • Journal article (peer-reviewed)abstract
    • Background: Smoking is a recognised risk factor for pancreatic cancer and has been associated with chronic pancreatitis and also with type II diabetes. Aims: The aim of this study was to investigate the effect of tobacco on the age of diagnosis of pancreatitis and progression of disease, as measured by the appearance of calcification and diabetes. Patients: We used data from a retrospective cohort of 934 patients with chronic alcoholic pancreatitis where information on smoking was available, who were diagnosed and followed in clinical centres in five countries. Methods: We compared age at diagnosis of pancreatitis in smokers versus non-smokers, and used the Cox proportional hazards model to evaluate the effects of tobacco on the development of calcification and diabetes, after adjustment for age, sex, centre, and alcohol consumption. Results: The diagnosis of pancreatitis was made, on average, 4.7 years earlier in smokers than in nonsmokers (p=0.001). Tobacco smoking increased significantly the risk of pancreatic calcifications ( hazard ratio (HR) 4.9 (95% confidence interval (CI) 2.3-10.5) for smokers v non-smokers) and to a lesser extent the risk of diabetes (HR 2.3 (95% CI 1.2-4.2)) during the course of pancreatitis. Conclusions: In this study, tobacco smoking was associated with earlier diagnosis of chronic alcoholic pancreatitis and with the appearance of calcifications and diabetes, independent of alcohol consumption.
  •  
10.
  • Yi, Chuixiang, et al. (author)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
11.
  •  
12.
  • Ammann, B, et al. (author)
  • Switzerland
  • 1996
  • Other publication (other academic/artistic)
  •  
13.
  • Ammann, B., et al. (author)
  • The conformal Yamabe constant of product manifolds
  • 2013
  • In: Proceedings of the American Mathematical Society. - 0002-9939 .- 1088-6826. ; 141:1, s. 295-307
  • Journal article (peer-reviewed)abstract
    • Let (V, g) and (W, h) be compact Riemannian manifolds of dimension at least 3. We derive a lower bound for the conformal Yamabe constant of the product manifold (V × W, g + h) in terms of the conformal Yamabe constants of (V, g) and (W, h).
  •  
14.
  • Artiglia, Luca, et al. (author)
  • A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br center dot OOO-] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.
  •  
15.
  • Bartels-Rausch, T., et al. (author)
  • A review of air-ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow
  • 2014
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:3, s. 1587-1633
  • Journal article (peer-reviewed)abstract
    • Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air-ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed. © Author(s) 2014.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Fowler, D., et al. (author)
  • Atmospheric composition change : Ecosystems-Atmosphere interactions
  • 2009
  • In: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:33, s. 5193-5267
  • Research review (peer-reviewed)abstract
    • Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles in the size range 1 nm-10 mu m including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean-atmosphere exchange are included. The material presented is biased towards the last decade, but includes earlier work, where more recent developments are limited or absent. New methodologies and instrumentation have enabled, if not driven technical advances in measurement. These developments have advanced the process understanding and upscaling of fluxes, especially for particles, VOC and NH3. Examples of these applications include mass spectrometric methods, such as Aerosol Mass Spectrometry (AMS) adapted for field measurement of atmosphere-surface fluxes using micrometeorological methods for chemically resolved aerosols. Also briefly described are some advances in theory and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O-3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement at a continental scale within the NitroEurope network represents a quantum development in the application of research teams to address the underpinning science of reactive nitrogen in the cycling between ecosystems and the atmosphere in Europe. Some important developments of the science have been applied to assist in addressing policy questions, which have been the main driver of the research agenda, while other developments in understanding have not been applied to their wider field especially in chemistry-transport models through deficiencies in obtaining appropriate data to enable application or inertia within the modelling community. The paper identifies applications, gaps and research questions that have remained intractable at least since 2000 within the specialized sections of the paper, and where possible these have been focussed on research questions for the coming decade. 
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Kong, Xiangrui, et al. (author)
  • A surface-promoted redox reaction occurs spontaneously on solvating inorganic aerosol surfaces
  • 2021
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 374:6568
  • Journal article (peer-reviewed)abstract
    • A surface-promoted sulfate-reducing ammonium oxidation reaction was discovered to spontaneously take place on common inorganic aerosol surfaces undergoing solvation. Several key intermediate species-including elemental sulfur (S-0), bisulfide (HS-), nitrous acid (HONO), and aqueous ammonia [NH3(aq)]-were identified as reaction components associated with the solvation process. Depth profiles of relative species abundance showed the surface propensity of key species. The species assignments and depth profile features were supported by classical and first-principles molecular dynamics calculations, and a detailed mechanism was proposed to describe the processes that led to unexpected products during salt solvation. This discovery revealed chemistry that is distinctly linked to a solvating surface and has great potential to illuminate current puzzles within heterogeneous chemistry.
  •  
28.
  • Kong, Xiangrui, et al. (author)
  • Adsorbed Water Promotes Chemically Active Environments on the Surface of Sodium Chloride
  • 2023
  • In: Journal of Physical Chemistry Letters. - 1948-7185. ; 14:26, s. 6151-6156
  • Journal article (peer-reviewed)abstract
    • Gas-particleinterfaces are chemically active environments.This study investigates the reactivity of SO2 on NaCl surfacesusing advanced experimental and theoretical methods with a NH4Cl substrate also examined for cation effects. Results showthat NaCl surfaces rapidly convert to Na2SO4 with a new chlorine component when exposed to SO2 underlow humidity. In contrast, NH4Cl surfaces have limitedSO(2) uptake and do not change significantly. Depth profilesreveal transformed layers and elemental ratios at the crystal surfaces.The chlorine species detected originates from Cl- expelled from the NaCl crystal structure, as determined by atomisticdensity functional theory calculations. Molecular dynamics simulationshighlight the chemically active NaCl surface environment, driven bya strong interfacial electric field and the presence of sub-monolayerwater coverage. These findings underscore the chemical activity ofsalt surfaces and the unexpected chemistry that arises from theirinteraction with interfacial water, even under very dry conditions.
  •  
29.
  • Kong, Xiangrui, et al. (author)
  • Reversibly Physisorbed and Chemisorbed Water on Carboxylic Salt Surfaces under Atmospheric Conditions
  • 2020
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:9, s. 5263-5269
  • Journal article (peer-reviewed)abstract
    • Copyright © 2020 American Chemical Society. The particle-gas interface in aerosol systems is of essential importance because it is here that many key atmospheric processes occur. In this study, we employ ambient pressure X-ray photoelectron spectroscopy (APXPS) to investigate the surface properties and processes of an atmospherically relevant carboxylic salt, sodium acetate, at subdeliquescence conditions. From the depth profiles of the elemental ratios of sodium, oxygen, and carbon, we find that after deliquescence-efflorescence cycles the salt surface is sodium-depleted. The mechanism of the observed depletion is proposed to be (i) the formation of neutral acetic acid in the solution due to the nature of the basic salt; (ii) the selective surface enhancement of neutral molecules under aqueous condition; and (iii) a hypothetical kinetic barrier to re-homogenization due to spatial separation and special local conditions on the surface, resulting in varied local surface composition. When the relative humidity gradually increases and approaches the deliquescence point, both reversible water uptake and reversible surface dissociation are confirmed by near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy at the oxygen K-edge and sodium K-edge, respectively. The solvation of sodium requires a higher relative humidity than needed for water adsorption, which suggests that water molecules are taken up by the surface, but the solvation of the salt surface begins only when sufficient water molecules are present, to facilitate the process. The sodium-depleted surface requires additional adsorbed water to affect and dissolve the sodium ions in deeper regions.
  •  
30.
  • Lembrechts, Jonas J., et al. (author)
  • Global maps of soil temperature
  • 2022
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Journal article (peer-reviewed)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
31.
  • Niu, Shuli, et al. (author)
  • Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
  • 2012
  • In: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 194:3, s. 775-783
  • Journal article (peer-reviewed)abstract
    • • It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
  •  
32.
  •  
33.
  •  
34.
  • Schmidt, G. A., et al. (author)
  • Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0)
  • 2011
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 4:1, s. 33-45
  • Journal article (peer-reviewed)abstract
    • Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
  •  
35.
  • Schmidt, G. A., et al. (author)
  • Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0)
  • 2010
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X. ; 3:3, s. 1549-1586
  • Journal article (peer-reviewed)abstract
    • Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
  •  
36.
  • Schmidt, G. A., et al. (author)
  • Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1)
  • 2012
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 5:1, s. 185-191
  • Journal article (peer-reviewed)abstract
    • We update the forcings for the PMIP3 experiments for the Last Millennium to include new assessments of historical land use changes and discuss new suggestions for calibrating solar activity proxies to total solar irradiance.
  •  
37.
  • Wohlfahrt, G., et al. (author)
  • An ecosystem-scale perspective of the net land methanol flux : synthesis of micrometeorological flux measurements
  • 2015
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7324. ; 15:13, s. 7413-7427
  • Journal article (peer-reviewed)abstract
    • Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of the rich information content of micrometeorological flux measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-37 of 37
Type of publication
journal article (32)
research review (2)
other publication (1)
conference paper (1)
book chapter (1)
Type of content
peer-reviewed (31)
other academic/artistic (6)
Author/Editor
Ammann, B (8)
Gaillard, Marie-Jose (4)
AMMANN, A (4)
Pettersson, Jan B. C ... (4)
Kong, Xiangrui (4)
Muscheler, Raimund (3)
show more...
Eicher, U. (3)
BRYSON, Y (3)
MOFENSON, L (3)
Lotter, A F (3)
Solanki, S. K. (3)
Pongratz, J. (3)
Artiglia, Luca (3)
Bartels-Rausch, Thor ... (3)
Ammann, Markus (3)
Bryceson, YT (2)
Nemitz, E. (2)
Simpson, David, 1961 (2)
Nilsson, Mats (2)
Kiely, Gerard (2)
Al-Herz, W (2)
Duse, M (2)
Montagnani, Leonardo (2)
Lindroth, Anders (2)
Rogers, M (2)
de Bruin, ED (2)
Ehrnst, A (2)
Coll, O (2)
Pardi, G (2)
Scaravelli, G (2)
Stegagno, M (2)
Arneth, Almut (2)
Henter, JI (2)
Knols, RH (2)
Tobolski, K. (2)
DABIS, F (2)
GOEDERT, J (2)
NEWELL, ML (2)
PECKHAM, C (2)
SEMPRINI, A (2)
Chaix, L (2)
Elias, S A (2)
Hofman, W (2)
Siegenthaler, U (2)
Wilkinson, B (2)
Dellwik, Ebba (2)
Gladich, Ivan (2)
Laj, P. (2)
de Leeuw, G. (2)
Tesi, B (2)
show less...
University
Lund University (11)
Karolinska Institutet (11)
University of Gothenburg (7)
Linnaeus University (5)
Stockholm University (4)
Umeå University (3)
show more...
Chalmers University of Technology (2)
Swedish University of Agricultural Sciences (2)
Royal Institute of Technology (1)
Karlstad University (1)
show less...
Language
English (37)
Research subject (UKÄ/SCB)
Natural sciences (19)
Medical and Health Sciences (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view