SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aquila Andrew L) "

Search: WFRF:(Aquila Andrew L)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Kupitz, Christopher, et al. (author)
  • Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7517, s. 261-265
  • Journal article (peer-reviewed)abstract
    • Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.
  •  
4.
  • Nik-Zainal, Serena, et al. (author)
  • Mutational Processes Molding the Genomes of 21 Breast Cancers
  • 2012
  • In: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 149:5, s. 979-993
  • Journal article (peer-reviewed)abstract
    • All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis,'' was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.
  •  
5.
  • Nik-Zainal, Serena, et al. (author)
  • The Life History of 21 Breast Cancers
  • 2012
  • In: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 149:5
  • Journal article (peer-reviewed)abstract
    • Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.
  •  
6.
  • Nik-Zainal, Serena, et al. (author)
  • Landscape of somatic mutations in 560 breast cancer whole-genome sequences
  • 2016
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 534:7605, s. 47-54
  • Journal article (peer-reviewed)abstract
    • We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.
  •  
7.
  • Aquila, Andrew, et al. (author)
  • Time-resolved protein nanocrystallography using an X-ray free-electron laser
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:3, s. 2706-2716
  • Journal article (peer-reviewed)abstract
    • We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
  •  
8.
  • Chapman, Henry N, et al. (author)
  • Femtosecond X-ray protein nanocrystallography.
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 470:7332, s. 73-7
  • Journal article (peer-reviewed)abstract
    • X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200nm to 2μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
  •  
9.
  • Ekeberg, Tomas, et al. (author)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • In: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Journal article (peer-reviewed)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
10.
  • Johansson, Linda C, 1983, et al. (author)
  • Lipidic phase membrane protein serial femtosecond crystallography.
  • 2012
  • In: Nature methods. - : Springer Science and Business Media LLC. - 1548-7105 .- 1548-7091. ; 9:3, s. 263-265
  • Journal article (peer-reviewed)abstract
    • X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.
  •  
11.
  • Johansson, Linda C, 1983, et al. (author)
  • Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography.
  • 2013
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Journal article (peer-reviewed)abstract
    • Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8Å resolution and determine its serial femtosecond crystallography structure to 3.5Å resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
  •  
12.
  • Kassemeyer, Stephan, et al. (author)
  • Femtosecond free-electron laser x-ray diffraction data sets for algorithm development
  • 2012
  • In: Optics Express. - 1094-4087. ; 20:4, s. 4149-4158
  • Journal article (peer-reviewed)abstract
    • We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
  •  
13.
  • Koopmann, Rudolf, et al. (author)
  • In vivo protein crystallization opens new routes in structural biology
  • 2012
  • In: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 9:3, s. 259-262
  • Journal article (peer-reviewed)abstract
    • Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.
  •  
14.
  • Loh, N. Duane, et al. (author)
  • Sensing the wavefront of x-ray free-electron lasers using aerosol spheres
  • 2013
  • In: Optics Express. - 1094-4087. ; 21:10, s. 12385-12394
  • Journal article (peer-reviewed)abstract
    • Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 1021 W/m(2) can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wavefront sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, our paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.
  •  
15.
  • Lomb, Lukas, et al. (author)
  • Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
  • 2011
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 84:21, s. 214111-1-214111-6
  • Journal article (peer-reviewed)abstract
    • X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects.
  •  
16.
  • Park, Hyung Joo, et al. (author)
  • Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers
  • 2013
  • In: Optics Express. - 1094-4087. ; 21:23, s. 28729-28742
  • Journal article (peer-reviewed)abstract
    • Single shot diffraction imaging experiments via X-ray free-electron lasers can generate as many as hundreds of thousands of diffraction patterns of scattering objects. Recovering the real space contrast of a scattering object from these patterns currently requires a reconstruction process with user guidance in a number of steps, introducing severe bottlenecks in data processing. We present a series of measures that replace user guidance with algorithms that reconstruct contrasts in an unsupervised fashion. We demonstrate the feasibility of automating the reconstruction process by generating hundreds of contrasts obtained from soot particle diffraction experiments.
  •  
17.
  • Redecke, Lars, et al. (author)
  • Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser.
  • 2013
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 339:6116, s. 227-30
  • Journal article (peer-reviewed)abstract
    • The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the "diffraction-before-destruction" approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.
  •  
18.
  • Seibert, M. Marvin, et al. (author)
  • Single mimivirus particles intercepted and imaged with an X-ray laser
  • 2011
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 470:7332, s. 78-81
  • Journal article (peer-reviewed)abstract
    • X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions(1-4). Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma(1). The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval(2). Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a noncrystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source(5). Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
  •  
19.
  • Yoon, Chun Hong, et al. (author)
  • Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering
  • 2011
  • In: Optics Express. - 1094-4087. ; 19:17, s. 16542-16549
  • Journal article (peer-reviewed)abstract
    • Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.
  •  
20.
  • Aquila, Andrew L., et al. (author)
  • Measurements of the optical constants of scandium in the 50-1300 eV range
  • 2004
  • In: SPIE 5538, Optical Constants of Materials for UV to X-Ray Wavelengths. - : SPIE - International Society for Optical Engineering. ; , s. 64-71
  • Conference paper (peer-reviewed)abstract
    • Scandium containing multilayers have been produced with very high reflectivity in the soft x-ray spectrum.  Accurate optical constants are required in order to model the multilayer reflectivity.  Since there are relatively few measurements of the optical constants of Scandium in the soft x-ray region we have performed measurements over the energy range of 50-1,300 eV.  Thin films of Scandium were deposited by ion-assisted magnetron sputtering at Linkoping University and DC Magnetron sputtering at CXRO.  Transmission measurements were performed at the Advanced Light Source beamline 6.3.2.  The absorption coefficient was deduced from the measurements and the dispersive part of the index of refraction was obtained using the Kramers-Kronig relation.  The measured optical constants are used to model the near-normal incidence reflectivity of Cr/Sc multilayers near the Sc L2,3 edge.
  •  
21.
  • Boll, Rebecca, et al. (author)
  • Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules
  • 2014
  • In: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1364-5498. ; 171, s. 57-80
  • Journal article (peer-reviewed)abstract
    • This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
  •  
22.
  • Lee, Ho-Hsien, et al. (author)
  • Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1
  • 2014
  • In: IUCrJ. - 2052-2525. ; 1:5, s. 305-317
  • Journal article (peer-reviewed)abstract
    • CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) andthe membrane-proximal region of gp41 (MPR), the transmembrane envelopeprotein ofHuman immunodeficiency virus 1(HIV-1), and has previously beenshown to induce the production of anti-HIV-1 antibodies with antiviralfunctions. To further improve the design of this candidate vaccine, X-raycrystallography experiments were performed to obtain structural informationabout this fusion protein. Several variants of CTB-MPR were designed,constructed and recombinantly expressed inEscherichia coli. The first variantcontained a flexible GPGP linker between CTB and MPR, and yielded crystalsthat diffracted to a resolution of 2.3 A ̊, but only the CTB region was detectedin the electron-density map. A second variant, in which the CTB was directlyattached to MPR, was shown to destabilize pentamer formation. A thirdconstruct containing a polyalanine linker between CTB and MPR proved tostabilize the pentameric form of the protein during purification. The purificationprocedure was shown to produce a homogeneously pure and monodispersesample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered inthe third dimension. Nanocrystals obtained using the same precipitant showedpromising X-ray diffraction to 5 A ̊resolution in femtosecond nanocrystallo-graphy experiments at the Linac Coherent Light Source at the SLAC NationalAccelerator Laboratory. The results demonstrate the utility of femtosecondX-ray crystallography to enable structural analysis based on nano/microcrystalsof a protein for which no macroscopic crystals ordered in three dimensions havebeen observed before.
  •  
23.
  • Nass, Karol, et al. (author)
  • Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams
  • 2015
  • In: Journal of Synchrotron Radiation. - 0909-0495 .- 1600-5775. ; 22:2, s. 225-238
  • Journal article (peer-reviewed)abstract
    • Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe–4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe–4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.
  •  
24.
  • Smid, Marcel, et al. (author)
  • Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA, PTEN, CCND1 and CDH1. We find that CCND3 expression levels do not correlate with amplification, while increased GATA3 expression in mutant GATA3 cancers suggests GATA3 is an oncogene. In luminal cases the total number of substitutions, irrespective of type, associates with cell cycle gene expression and adverse outcome, whereas the number of mutations of signatures 3 and 13 associates with immune-response specific gene expression, increased numbers of tumour-infiltrating lymphocytes and better outcome. Thus, while earlier reports imply that the sheer number of somatic aberrations could trigger an immune-response, our data suggests that substitutions of a particular type are more effective in doing so than others.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24
Type of publication
journal article (22)
conference paper (1)
Type of content
peer-reviewed (23)
Author/Editor
Aquila, Andrew (16)
Shoeman, Robert L (16)
Chapman, Henry N. (16)
Barty, Anton (16)
Schlichting, Ilme (16)
Bogan, Michael J. (14)
show more...
Lomb, Lukas (14)
Nass, Karol (14)
Martin, Andrew V. (13)
Foucar, Lutz (13)
Bajt, Saša (13)
Kassemeyer, Stephan (13)
Liang, Mengning (13)
Erk, Benjamin (12)
Rudenko, Artem (12)
Rolles, Daniel (12)
Seibert, M Marvin (12)
Doak, R Bruce (12)
Rudek, Benedikt (12)
White, Thomas A. (12)
Bostedt, Christoph (12)
Epp, Sascha W. (12)
Gumprecht, Lars (12)
Ullrich, Joachim (12)
Graafsma, Heinz (11)
Hirsemann, Helmut (11)
Hartmann, Robert (11)
Maia, Filipe R. N. C ... (11)
Hunter, Mark S. (11)
Barthelmess, Miriam (11)
DePonte, Daniel P. (11)
Fleckenstein, Holger (11)
Hampton, Christina Y ... (11)
Holl, Peter (11)
Kimmel, Nils (11)
Reich, Christian (11)
Schulz, Joachim (11)
Soltau, Heike (11)
Weidenspointner, Geo ... (11)
Weierstall, Uwe (11)
Sierra, Raymond G. (10)
Fromme, Petra (10)
Coppola, Nicola (10)
Frank, Matthias (10)
Caleman, Carl (9)
Kirian, Richard A. (9)
Bozek, John D. (9)
Hartmann, Andreas (9)
Marchesini, Stefano (9)
Stellato, Francesco (9)
show less...
University
Uppsala University (16)
Lund University (6)
University of Gothenburg (5)
Swedish University of Agricultural Sciences (4)
Linköping University (2)
Karolinska Institutet (2)
show more...
Umeå University (1)
Stockholm University (1)
show less...
Language
English (24)
Research subject (UKÄ/SCB)
Natural sciences (17)
Medical and Health Sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view