SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Araújo Wagner L.) "

Search: WFRF:(Araújo Wagner L.)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Lind, Lars, et al. (author)
  • Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)
  • 2021
  • In: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions.
  •  
3.
  • Bixby, H., et al. (author)
  • Rising rural body-mass index is the main driver of the global obesity epidemic in adults
  • 2019
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 569:7755, s. 260-4
  • Journal article (peer-reviewed)abstract
    • Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.
  •  
4.
  •  
5.
  •  
6.
  • Taddei, C, et al. (author)
  • Repositioning of the global epicentre of non-optimal cholesterol
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 582:7810, s. 73-
  • Journal article (peer-reviewed)abstract
    • High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.
  •  
7.
  •  
8.
  •  
9.
  • Abdalla, H., et al. (author)
  • TeV Emission of Galactic Plane Sources with HAWC and HESS
  • 2021
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 917:1
  • Journal article (peer-reviewed)abstract
    • The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
  •  
10.
  •  
11.
  • Kehoe, Laura, et al. (author)
  • Make EU trade with Brazil sustainable
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Journal article (other academic/artistic)
  •  
12.
  • Florez-Sarasa, Igor, et al. (author)
  • Light-responsive metabolite and transcript levels are maintained following a dark-adaptation period in leaves of Arabidopsis thaliana.
  • 2012
  • In: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 195:1, s. 136-148
  • Journal article (peer-reviewed)abstract
    • The effect of previous light conditions on metabolite and transcript levels was investigated in leaves of Arabidopsis thaliana during illumination and after light-enhanced dark respiration (LEDR), when dark respiration was measured. • Primary carbon metabolites and the expression of light-responsive respiratory genes were determined in A. thaliana leaves before and after 30 min of darkness following different light conditions. In addition, metabolite levels were determined in the middle of the night and the in vivo activities of cytochrome and alternative respiratory pathways were determined by oxygen isotope fractionation. • A large number of metabolites were increased in leaves of plants growing in or transiently exposed to higher light intensities. Transcript levels of respiratory genes were also increased after high light treatment. For the majority of the light-induced metabolites and transcripts, the levels were maintained after 30 min of darkness, where higher and persistent respiratory activities were also observed. The levels of many metabolites were lower at night than after 30 min of darkness imposed in the day, but respiratory activities remained similar. • The results obtained suggest that 'dark' respiration measurements, as usually performed, are probably made under conditions in which the overall status of metabolites is strongly influenced by the previous light conditions.
  •  
13.
  • Pires, Marcel V., et al. (author)
  • The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis
  • 2016
  • In: Plant, Cell and Environment. - : Wiley. - 1365-3040 .- 0140-7791. ; 39:6, s. 1304-1319
  • Journal article (peer-reviewed)abstract
    • During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.
  •  
14.
  • Wallström, Sabá, et al. (author)
  • Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.
  • 2014
  • In: Plant and Cell Physiology. - : Oxford University Press (OUP). - 1471-9053 .- 0032-0781. ; 55:5, s. 881-896
  • Journal article (peer-reviewed)abstract
    • The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III, and IV. These energy-bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox-stabilisation and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)(+)-ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA-suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.
  •  
15.
  • Wallström, Sabá, et al. (author)
  • Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth.
  • 2014
  • In: Molecular Plant. - : Elsevier BV. - 1752-9867 .- 1674-2052. ; 7:2, s. 356-368
  • Journal article (peer-reviewed)abstract
    • Ca(2+)-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPH dehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript was suppressed by 80% in Arabidopsis thaliana plants, and external Ca(2+)-dependent NADPH dehydrogenase activity became undetectable in isolated mitochondria. This was linked to a decreased level of NADP+ in rosettes of the transgenic lines. Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of (14)C-glucose was increased. On soil, NDB1-suppressing plants had a decreased vegetative biomass, but leaf maximum quantum efficiency of photosystem II and CO2 assimilation rates, as well as total respiration were similar to the wild type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealed decreased levels of sugars, citric acid cycle intermediates and amino acids in the transgenic lines. The NDB1-suppression induced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. The transcriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thaliana overexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H) reduction levels, which in turn affect central metabolism and growth, and interact with defence signalling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view