SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arnar D) "

Search: WFRF:(Arnar D)

  • Result 1-12 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arking, D. E., et al. (author)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  • 2014
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Journal article (peer-reviewed)abstract
    • The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼ 8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. © 2014 Nature America, Inc.
  •  
2.
  •  
3.
  • Ntalla, Ioanna, et al. (author)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
4.
  • van de Vegte, Yordi, et al. (author)
  • Genetic insights into resting heart rate and its role in cardiovascular disease
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • The genetics and clinical consequences of resting heart rate (RHR) remain incompletely understood. Here, the authors discover new genetic variants associated with RHR and find that higher genetically predicted RHR decreases risk of atrial fibrillation and ischemic stroke. Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.
  •  
5.
  • van Setten, Jessica, et al. (author)
  • PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity
  • 2018
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genomewide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are overrepresented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of similar to 105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ionchannel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.
  •  
6.
  • Schultz, J. K., et al. (author)
  • European Society of Coloproctology: guidelines for the management of diverticular disease of the colon
  • 2020
  • In: Colorectal Disease. - : Wiley. - 1462-8910 .- 1463-1318. ; 22:52, s. 5-28
  • Journal article (peer-reviewed)abstract
    • Aim The goal of this European Society of Coloproctology (ESCP) guideline project is to give an overview of the existing evidence on the management of diverticular disease, primarily as a guidance to surgeons. Methods The guideline was developed during several working phases including three voting rounds and one consensus meeting. The two project leads (JKS and EA) appointed by the ESCP guideline committee together with one member of the guideline committee (WB) agreed on the methodology, decided on six themes for working groups (WGs) and drafted a list of research questions. Senior WG members, mostly colorectal surgeons within the ESCP, were invited based on publication records and geographical aspects. Other specialties were included in the WGs where relevant. In addition, one trainee or PhD fellow was invited in each WG. All six WGs revised the research questions if necessary, did a literature search, created evidence tables where feasible, and drafted supporting text to each research question and statement. The text and statement proposals from each WG were arranged as one document by the first and last authors before online voting by all authors in two rounds. For the second voting ESCP national representatives were also invited. More than 90% agreement was considered a consensus. The final phrasing of the statements with < 90% agreement was discussed in a consensus meeting at the ESCP annual meeting in Vienna in September 2019. Thereafter, the first and the last author drafted the final text of the guideline and circulated it for final approval and for a third and final online voting of rephrased statements. Results This guideline contains 38 evidence based consensus statements on the management of diverticular disease. Conclusion This international, multidisciplinary guideline provides an up to date summary of the current knowledge of the management of diverticular disease as a guidance for clinicians and patients.
  •  
7.
  •  
8.
  •  
9.
  • Aragam, KG, et al. (author)
  • Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:12, s. 1803-1815
  • Journal article (peer-reviewed)abstract
    • The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
  •  
10.
  • Aragam, KG, et al. (author)
  • Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:12, s. 1803-1815
  • Journal article (peer-reviewed)abstract
    • The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR–Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
  •  
11.
  • Hanifpour, Fatemeh, et al. (author)
  • Investigation into the mechanism of electrochemical nitrogen reduction reaction to ammonia using niobium oxynitride thin-film catalysts
  • 2022
  • In: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 403
  • Journal article (peer-reviewed)abstract
    • Niobium oxynitride (NbOxNy) thin films with varying combined non-metal vs. metal stoichiometries ( x + y ) and N/O stoichiometric ratios (y/x) are investigated for their ability to catalyze the nitrogen re-duction reaction and ammonia synthesis at ambient conditions. Electrochemical impedance spectroscopy and ammonia measurements show stark differences both in nitrogen vs. argon media on each surface and on the surfaces in the series when the combined stoichiometry of N + O vs. Nb increases. Surface stability checks at fixed intervals during the experiments and surface characterization after the experiments us -ing X-ray diffraction reveal the least changes occurred to the surface with the highest N + O stoichiometry. Based on these observations, an ammonia synthesis mechanism is proposed. Isotope labeling experiments on the most promising surface of the series, however, show no sign of catalytically produced ammonia, possibly due to the lack of stability of the surface to endure through the ammonia production cycle. 
  •  
12.
  • Hanifpour, Fatemeh, et al. (author)
  • Operando quantification of ammonia produced from computationally-derived transition metal nitride electro-catalysts
  • 2022
  • In: Journal of Catalysis. - : Elsevier. - 0021-9517 .- 1090-2694. ; 413, s. 956-967
  • Journal article (peer-reviewed)abstract
    • Electrochemical reduction of dinitrogen to ammonia is investigated in a micro-reactor flow-cell using thin films of VN, CrN, NbN and ZrN. Chronoamperometry loops are used for ammonia production analysis. Operando ammonia quantification is accomplished in a flow injection analyzer. Results show the effect of presence/absence of N-2(g) within both the electrochemical characterization and ammonia production for ZrN. However, no ammonia is detected from studies on CrN. VN and NbN are inactivated upon reacting their N atoms of the surface top layer(s). Results obtained from ammonia measurements, electrochemical impedance spectroscopy analysis, surface stability checks, and surface characterization using X-ray reflectivity, reveal certain trends indicating catalytic behavior for ZrN. However, the concentration of produced ammonia is below the detection limit of the methods devised to analyze the samples from isotope labeling experiments. The onset of ammonia production on ZrN appears to be in close agreement with that predicted previously by computational studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-12 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view