SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arnold Janine) "

Search: WFRF:(Arnold Janine)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Miller, Leah R., et al. (author)
  • Considering sex as a biological variable in preclinical research
  • 2016
  • In: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 31:1, s. 29-34
  • Journal article (peer-reviewed)abstract
    • In June 2015, the National Institutes of Health (NIH) released a Guide notice (NOT-OD-15-102) that highlighted the expectation of the NIH that the possible role of sex as a biologic variable be factored into research design, analyses, and reporting of vertebrate animal and human studies. Anticipating these guidelines, the NIH Office of Research on Women's Health, in October 2014, convened key stakeholders to discuss methods and techniques for integrating sex as a biologic variable in preclinical research. The workshop focused on practical methods, experimental design, and approaches to statistical analyses in the use of both male and female animals, cells, and tissues in preclinical research. Workshop participants also considered gender as a modifier of biology. This article builds on the workshop and is meant as a guide to preclinical investigators as they consider methods and techniques for inclusion of both sexes in preclinical research and is not intended to prescribe exhaustive/specific approaches for compliance with the new NIH policy.-Miller, L. R., Marks, C., Becker, J. B., Hurn, P. D., Chen, W.-J., Woodruff, T., McCarthy, M. M., Sohrabji, F., Schiebinger, L., Wetherington, C. L., Makris, S., Arnold, A. P., Einstein, G., Miller, V. M., Sandberg, K., Maier, S., Cornelison, T. L., Clayton, J. A. Considering sex as a biological variable in preclinical research.
  •  
2.
  • Shevela, Dmitriy, et al. (author)
  • Biogenesis of water splitting by photosystem II during de-etiolation of barley (Hordeum vulgare L.)
  • 2016
  • In: Plant, Cell and Environment. - : John Wiley & Sons. - 0140-7791 .- 1365-3040. ; 39:7, s. 1524-1536
  • Journal article (peer-reviewed)abstract
    • Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de-etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development. Here, we investigated the chronology of photosystem II (PSII) biogenesis by monitoring assembly status of chlorophyll-binding protein complexes and development of water splitting via O2 production in plastids (etiochloroplasts) isolated during de-etiolation of barley (Hordeum vulgare L.). Assembly of PSII monomers, dimers and complexes binding outer light-harvesting antenna [PSII-light-harvesting complex II (LHCII) supercomplexes] was identified after 1, 2 and 4 h of de-etiolation, respectively. Water splitting was detected in parallel with assembly of PSII monomers, and its development correlated with an increase of bound Mn in the samples. After 4 h of de-etiolation, etiochloroplasts revealed the same water-splitting efficiency as mature chloroplasts. We conclude that the capability of PSII to split water during de-etiolation precedes assembly of the PSII-LHCII supercomplexes. Taken together, data show a rapid establishment of water-splitting activity during etioplast-to-chloroplast transition and emphasize that assembly of the functional water-splitting site of PSII is not the rate-limiting step in the formation of photoactive thylakoid membranes.
  •  
3.
  • Shevela, Dmitriy, 1979-, et al. (author)
  • 'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis
  • 2019
  • In: Physiologia Plantarum. - : Wiley-Blackwell. - 0031-9317 .- 1399-3054. ; 166:1, s. 165-180
  • Journal article (peer-reviewed)abstract
    • High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water‐oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane‐inlet mass spectrometry and O2‐polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these ‘PSII birth defects’ in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de‐etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2‐polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB‐inhibitor binding, and thermoluminescence studies indicate that the decline of the high‐light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA− → QB during de‐etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer‐range energy transfer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view