SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Asensio M.) "

Search: WFRF:(Asensio M.)

  • Result 1-33 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Aleksic, J., et al. (author)
  • PG 1553+113 : FIVE YEARS OF OBSERVATIONS WITH MAGIC
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 748:1, s. 46-
  • Journal article (peer-reviewed)abstract
    • We present the results of five years (2005-2009) of MAGIC observations of the BL Lac object PG 1553+113 at very high energies (VHEs; E > 100 GeV). Power-law fits of the individual years are compatible with a steady mean photon index Gamma = 4.27 +/- 0.14. In the last three years of data, the flux level above 150 GeV shows a clear variability (probability of constant flux < 0.001%). The flux variations are modest, lying in the range from 4% to 11% of the Crab Nebula flux. Simultaneous optical data also show only modest variability that seems to be correlated with VHE gamma-ray variability. We also performed a temporal analysis of (all available) simultaneous Fermi/Large Area Telescope data of PG 1553+113 above 1 GeV, which reveals hints of variability in the 2008-2009 sample. Finally, we present a combination of the mean spectrum measured at VHEs with archival data available for other wavelengths. The mean spectral energy distribution can be modeled with a one-zone synchrotron self-Compton model, which gives the main physical parameters governing the VHE emission in the blazar jet.
  •  
4.
  • Aleksic, J., et al. (author)
  • Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 544, s. A142-
  • Journal article (peer-reviewed)abstract
    • Context. We present the discovery of very high energy (VHE, E > 100 GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in 2011 January-February for 20.3 h. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in 2011 January-February resulted in the first detection of the source at VHE with a statistical significance of 9.4 sigma. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV gamma-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.
  •  
5.
  • Desidera, S., et al. (author)
  • The SPHERE infrared survey for exoplanets (SHINE) I. Sample definition and target characterization
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Journal article (peer-reviewed)abstract
    • Context. Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys.Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE.Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations.Results. The properties of individual targets and of the sample as a whole are presented.
  •  
6.
  • Vigan, A., et al. (author)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Journal article (peer-reviewed)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
7.
  • Bonavita, M., et al. (author)
  • New binaries from the SHINE survey
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Journal article (peer-reviewed)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
8.
  • Lazzoni, C., et al. (author)
  • The search for disks or planetary objects around directly imaged companions : a candidate around DH Tauri B
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered using radial velocity and transit techniques, an increasing number have been directly imaged. These planets and brown dwarfs are extraordinary sources of information that help in rounding out our understanding of planetary systems.Aims. In this paper, we focus our attention on substellar companions detected with the latter technique, with the primary goal of investigating their close surroundings and looking for additional companions and satellites, as well as disks and rings. Any such discovery would shed light on many unresolved questions, particularly with regard to their possible formation mechanisms.Methods. To reveal bound features of directly imaged companions, whether for point-like or extended sources, we need to suppress the contribution from the source itself. Therefore, we developed a method based on the negative fake companion technique that first estimates the position in the field of view (FoV) and the flux of the imaged companion with high precision, then subtracts a rescaled model point spread function (PSF) from the imaged companion, using either an image of the central star or another PSF in the FoV. Next it performs techniques, such as angular differential imaging, to further remove quasi-static patterns of the star (i.e., speckle contaminants) that affect the residuals of close-in companions.Results. After testing our tools on simulated companions and disks and on systems that were chosen ad hoc, we applied the method to the sample of substellar objects observed with SPHERE during the SHINE GTO survey. Among the 27 planets and brown dwarfs we analyzed, most objects did not show remarkable features, which was as expected, with the possible exception of a point source close to DH Tau B. This candidate companion was detected in four different SPHERE observations, with an estimated mass of ~1MJup, and a mass ratio with respect to the brown dwarf of 1∕10. This binary system, if confirmed, would be the first of its kind, opening up interesting questions for the formation mechanism, evolution, and frequency of such pairs. In order to address the latter, the residuals and contrasts reached for 25 companions in the sample of substellar objects observed with SPHERE were derived. If the DH Tau Bb companion is real, the binary fraction obtained is ~7%, which is in good agreement with the results obtained for field brown dwarfs.Conclusions. While there may currently be many limitations affecting the exploration of bound features to directly imaged exoplanets and brown dwarfs, next-generation instruments from the ground and space (i.e., JWST, ELT, and LUVOIR) will be able to image fainter objects and, thus, drive the application of this technique in upcoming searches for exo-moons and circumplanetary disks. 
  •  
9.
  • Asensio-Torres, Ruben, et al. (author)
  • Polarimetry and flux distribution in the debris disk around HD 32297
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Journal article (peer-reviewed)abstract
    • We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > 5 sigma levels from similar to 0.45 '' to similar to 1.7 '' (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of similar to 0.75 '' (NE side) and similar to 0.65 '' (SW side). Global forward-modelling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from similar to 0.25-1.6 '', although the central region is quite noisy and high S/N are only found in the range similar to 0.75-1.2 ''. The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from similar to 10% at 0.55 '' to similar to 25% at 1.6 ''. The maximum is found at scattering angles of similar to 90 degrees, either from the main components of the disk or from dust grains blown out to larger radii.
  •  
10.
  • Lagrange, A. M., et al. (author)
  • Unveiling the beta Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • Context. The nearby and young beta Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at similar or equal to 9 au, as well as an inner planet orbiting at similar or equal to 2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution.Aims. We aim to further constrain the orbital and physical properties of beta Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system.Methods. We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry.Results. The orbital properties of both planets are constrained with a semi-major axis of 9.8 0.4 au and 2.7 +/- 0.02 au for b and c, respectively, and eccentricities of 0.09 +/- 0.1 and 0.27 +/- 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of beta Pictoris c might still be over-estimated. If no prior is provided on the mass of beta Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of beta Pictoris b, we find a solution in the 10-11 M-Jup range. Conversely, beta Pictoris c's mass is well constrained, at 7.8 +/- 0.4 M-Jup, assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the beta Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2 sigma level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M-Jup closer than 3 au, and more massive than 3.5 M-Jup between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M-Jup.Conclusions. Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of beta Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of beta Pictoris b.
  •  
11.
  • Lacour, S., et al. (author)
  • The mass of β Pictoris c from β Pictoris b orbital motion
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet.Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations.Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04(-3.10)(+4.53) M-Jup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15(-1.06)(+1.08) M-Jup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89(-0.75)(+0.75) M-Jup. With a semimajor axis of 2.68 +/- 0.02 au, a period of 1221 +/- 15 days, and an eccentricity of 0.32 +/- 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet.
  •  
12.
  •  
13.
  • Asensio-Torres, R., et al. (author)
  • Perturbers : SPHERE detection limits to planetary-mass companions in protoplanetary disks
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Journal article (peer-reviewed)abstract
    • The detection of a wide range of substructures such as rings, cavities, and spirals has become a common outcome of high spatial resolution imaging of protoplanetary disks, both in the near-infrared scattered light and in the thermal millimetre continuum emission. The most frequent interpretation of their origin is the presence of planetary-mass companions perturbing the gas and dust distribution in the disk (perturbers), but so far the only bona fide detection has been the two giant planets carving the disk around PDS 70. Here, we present a sample of 15 protoplanetary disks showing substructures in SPHERE scattered-light images and a homogeneous derivation of planet detection limits in these systems. To obtain mass limits we rely on different post-formation luminosity models based on distinct formation conditions, which are critical in the first million years of evolution. We also estimate the mass of these perturbers through a Hill radius prescription and a comparison to ALMA data. Assuming that one single planet carves each substructure in scattered light, we find that more massive perturbers are needed to create gaps within cavities than rings, and that we might be close to a detection in the cavities of RX J1604.3-2130A, RX J1615.3-3255, Sz Cha, HD 135344B, and HD 34282. We reach typical mass limits in these cavities of 3–10 MJup. For planets in the gaps between rings, we find that the detection limits of SPHERE high-contrast imaging are about an order of magnitude away in mass, and that the gaps of PDS 66 and HD 97048 seem to be the most promising structures for planet searches. The proposed presence of massive planets causing spiral features in HD 135344B and HD 36112 are also within SPHERE’s reach assuming hot-start models. These results suggest that the current detection limits are able to detect hot-start planets in cavities, under the assumption that they are formed by a single perturber located at the centre of the cavity. More realistic planet mass constraints would help to clarify whether this is actually the case, which might indicate that perturbers are not the only way of creating substructures.
  •  
14.
  • Olofsson, J., et al. (author)
  • Resolving faint structures in the debris disk around TWA 7 Tentative detections of an outer belt, a spiral arm, and a dusty cloud
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Journal article (peer-reviewed)abstract
    • Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at similar to 0.72 '' (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of similar to 13 degrees with a position angle of similar to 91 degrees east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of similar to 1.5 '' (similar to 52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11 ''. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at similar to 0.2 '' (similar to 7 au) and another belt at 0.72 '' (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 M-circle plus planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
  •  
15.
  • Felipe, T., et al. (author)
  • Three-dimensional structure of a sunspot light bridge
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • Context. Active regions are the most prominent manifestations of solar magnetic fields; their generation and dissipation are fundamental problems in solar physics. Light bridges are commonly present during sunspot decay, but a comprehensive picture of their role in the removal of the photospheric magnetic field is still lacking. Aims. We study the three-dimensional configuration of a sunspot, and in particular, its light bridge, during one of the last stages of its decay. Methods. We present the magnetic and thermodynamical stratification inferred from full Stokes inversions of the photospheric Si I 10 827 angstrom and Ca I 10 839 angstrom lines obtained with the GREGOR Infrared Spectrograph of the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The analysis is complemented by a study of continuum images covering the disk passage of the active region, which are provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Results. The sunspot shows a light bridge with penumbral continuum intensity that separates the central umbra from a smaller umbra. We find that in this region the magnetic field lines form a canopy with lower magnetic field strength in the inner part. The photospheric light bridge is dominated by gas pressure (high-beta), as opposed to the surrounding umbra, where the magnetic pressure is higher. A convective flow is observed in the light bridge. This flow is able to bend the magnetic field lines and to produce field reversals. The field lines merge above the light bridge and become as vertical and strong as in the surrounding umbra. We conclude that this occurs because two highly magnetized regions approach each other during the sunspot evolution.
  •  
16.
  • Asensio-Torres, Ruben, et al. (author)
  • SPOTS : The Search for Planets Orbiting Two Stars III. Complete sample and statistical analysis
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Journal article (peer-reviewed)abstract
    • Binary stars constitute a large percentage of the stellar population, yet relatively little is known about the planetary systems orbiting them. Most constraints on circumbinary planets (CBPs) so far come from transit observations with the Kepler telescope, which is sensitive to close-in exoplanets but does not constrain planets on wider orbits. However, with continuous developments in high-contrast imaging techniques, this population can now be addressed through direct imaging. We present the full survey results of the Search for Planets Orbiting Two Stars (SPOTS) survey, which is the first direct imaging survey targeting CBPs. The SPOTS observational program comprises 62 tight binaries that are young and nearby, and thus suitable for direct imaging studies, with VLT/NaCo and VLT/SPHERE. Results from SPOTS include the resolved circumbinary disk around AK Sco, the discovery of a low-mass stellar companion in a triple packed system, the relative astrometry of up to 9 resolved binaries, and possible indications of non-background planetary-mass candidates around HIP 77911. We did not find any CBP within 300 AU, which implies a frequency upper limit on CBPs (1-15 M-Jup) of 6-10% between 30-300 AU. Coupling these observations with an archival dataset for a total of 163 stellar pairs, we find a best-fit CBP frequency of 1.9% (2-15 M-Jup) between 1 and 300 AU with a 10.5% upper limit at a 95% confidence level. This result is consistent with the distribution of companions around single stars.
  •  
17.
  • Garranzo-Asensio, M., et al. (author)
  • Identification of prefrontal cortex protein alterations in Alzheimer's Disease
  • 2018
  • In: Oncotarget. - : Impact Journals LLC. - 1949-2553. ; 9:13, s. 10847-10867
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is the most common form of dementia in developed countries. A better understanding of the events taking place at the molecular level would help to identify novel protein alterations, which might be used in diagnosis or for treatment development. In this study, we have performed the high-throughput analysis of 706 molecules mostly implicated in cell-cell communication and cell signaling processes by using two antibody microarray platforms. We screened three AD pathological groups -each one containing four pooled samples- from Braak stages IV, V and VI, and three control groups from two healthy subjects, five frontotemporal and two vascular dementia patients onto Panorama and L-Series antibody microarrays to identify AD-specific alterations not common to other dementias. Forty altered proteins between control and AD groups were detected, and validated by i) meta-analysis of mRNA alterations, ii) WB, and iii) FISH and IHC using an AD-specific tissue microarray containing 44 samples from AD patients at different Braak stages, and frontotemporal and vascular dementia patients and healthy individuals as controls. We identified altered proteins in AD not common to other dementias like the E3 ubiquitin-protein ligase TOPORS, Layilin and MICB, and validated the association to AD of the previously controverted proteins DDIT3 and the E3 ubiquitin-protein ligase XIAP. These altered proteins constitute interesting targets for further immunological analyses using sera, plasma and CSF to identify AD blood- or cerebrospinal fluidbiomarkers and to perform functional analysis to determine their specific role in AD, and their usefulness as potential therapeutic targets of intervention.
  •  
18.
  • Link, S., et al. (author)
  • Introducing strong correlation effects into graphene by gadolinium intercalation
  • 2019
  • In: Physical Review B. - 2469-9950. ; 100:12
  • Journal article (peer-reviewed)abstract
    • Exotic ordered ground states driven by electronic correlations are expected to be induced in monolayer graphene when doped to the Van Hove singularity. Such doping levels are reached by intercalating Gd in graphene on SiC(0001), resulting in a strong homogeneity and stability. The electronic spectrum now exhibits severe renormalizations. Flat bands develop which are driven by electronic correlations according to our theoretical studies. Due to strong electron-phonon coupling in this regime, polaron replica bands develop. Thus, interesting ordered ground states should be made accessible.
  •  
19.
  • Rachmeler, L. A., et al. (author)
  • Quiet Sun Center to Limb Variation of the Linear Polarization Observed by CLASP2 Across the Mg ıı h and k Lines
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 936:1
  • Journal article (peer-reviewed)abstract
    • The CLASP2 (Chromospheric LAyer Spectro-Polarimeter 2) sounding rocket mission was launched on 2019 April 11. CLASP2 measured the four Stokes parameters of the Mg ıı h and k spectral region around 2800 Å along a 200'' slit at three locations on the solar disk, achieving the first spatially and spectrally resolved observations of the solar polarization in this near-ultraviolet region. The focus of the work presented here is the center-to-limb variation of the linear polarization across these resonance lines, which is produced by the scattering of anisotropic radiation in the solar atmosphere. The linear polarization signals of the Mg ıı h and k lines are sensitive to the magnetic field from the low to the upper chromosphere through the Hanle and magneto-optical effects. We compare the observations to theoretical predictions from radiative transfer calculations in unmagnetized semiempirical models, arguing that magnetic fields and horizontal inhomogeneities are needed to explain the observed polarization signals and spatial variations. This comparison is an important step in both validating and refining our understanding of the physical origin of these polarization signatures, and also in paving the way toward future space telescopes for probing the magnetic fields of the solar upper atmosphere via ultraviolet spectropolarimetry.
  •  
20.
  • Davila, M. E., et al. (author)
  • Surface phase transitions at metal-semiconductor interfaces : a revisit is needed
  • 2004
  • In: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 234:04-jan, s. 274-285
  • Journal article (peer-reviewed)abstract
    • In this article, we review some of the most recent progress and understanding in the low temperature surface phase transitions at prototypical metal-semiconductor interfaces. We essentially focus on quantitative surface structural information obtained by using a significant variety of specialised techniques for the individual phases of a model system, namely, tin on Ge(1 1 1) substrates. The strengths and limitations of the structural results obtained by using scanning tunnelling microscopy, photoelectron diffraction and surface X-ray diffraction are discussed in relation to their support with respect to possible mechanisms recently invoked in the literature as being at the origin of the phase transition. These investigations show that a large progress has been made in this field, taking into account the very valuable experimental and theoretical contributions provided by different groups. There remain, however, essential unresolved problems, which will be analysed in the light of the limitations of these structural methods and the difficulty presented by the complex adsorbate systems studied.
  •  
21.
  • Le Lay, G., et al. (author)
  • Nature of the root 3 alpha to 3 x 3 reversible phase transition at low temperature in Sn/Ge (111)
  • 2001
  • In: Applied Surface Science. - 0169-4332 .- 1873-5584. ; 175, s. 201-206
  • Journal article (peer-reviewed)abstract
    • Metal-induced superstructures on semiconductors at sub-monolayer coverages have been mostly studied at, or above, room temperature. Yet, recently, several reversible phase transitions, like, e.g. the root3 x root3 alpha to 3 x 3 transition in the Pb, Sn/Ge (111) prototypical systems, have been discovered below RT. The origin of these new reconstructions is very intriguing and is a matter of strong debate. Some groups privilege electronic instabilities leading to charge ordered states at low temperature (LT), while other favor dynamical effects and the formation a kind of bond density waves (BDW's) at LT. Besides these intrinsic behaviors, the role played by inevitable defects has also been emphasized by several authors. Focussing especially on the Sn/Ge (111) system, we present a detailed analysis of the spectroscopic signatures of each phase in photoemission measurements. We show that static models are impossible to reconcile with these measurements.
  •  
22.
  • Martinez Gonzalez, M. J., et al. (author)
  • ON THE MAGNETISM AND DYNAMICS OF PROMINENCE LEGS HOSTING TORNADOES
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 825:2
  • Journal article (peer-reviewed)abstract
    • Solar tornadoes are dark vertical filamentary structures observed in the extreme ultraviolet associated with prominence legs and filament barbs. Their true nature and relationship to prominences requires an understanding of their magnetic structure and dynamic properties. Recently, a controversy has arisen: is the magnetic field organized forming vertical, helical structures or is it dominantly horizontal? And concerning their dynamics, are tornadoes really rotating or is it just a visual illusion? Here we analyze four consecutive spectro-polarimetric scans of a prominence hosting tornadoes on its legs, which helps us shed some light on their magnetic and dynamical properties. We show that the magnetic field is very smooth in all the prominence, which is probably an intrinsic property of the coronal field. The prominence legs have vertical helical fields that show slow temporal variation that is probably related to the motion of the fibrils. Concerning the dynamics, we argue that (1) if rotation exists, it is intermittent, lasting no more than one hour, and (2) the observed velocity pattern is also consistent with an oscillatory velocity pattern (waves).
  •  
23.
  • Medina-Dols, Aina, et al. (author)
  • Role of PATJ in stroke prognosis by modulating endothelial to mesenchymal transition through the Hippo/Notch/PI3K axis
  • 2024
  • In: Cell Death Discovery. - : Springer Nature. - 2058-7716. ; 10
  • Journal article (peer-reviewed)abstract
    • Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) <= 2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1 alpha also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ss, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, beta-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.
  •  
24.
  • Asensio Ramos, A., et al. (author)
  • Inference of the chromospheric magnetic field orientation in the Ca II 8542 angstrom line fibrils
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 599
  • Journal article (peer-reviewed)abstract
    • Context. Solar chromospheric fibrils, as observed in the core of strong chromospheric spectral lines, extend from photospheric field concentrations suggesting that they trace magnetic field lines. These images have been historically used as proxies of magnetic fields for many purposes.Aims. Use statistical analysis to test whether the association between fibrils and magnetic field lines is justified.Methods. We use a Bayesian hierarchical model to analyze several tens of thousands of pixels in spectro- polarimetric chromospheric images of penumbrae and chromospheric fibrils. We compare the alignment between the field azimuth inferred from the linear polarization signals through the transverse Zeeman effect and the direction of the fibrils in the image.Results. We conclude that, in the analyzed fields of view, fibrils are often well aligned with the magnetic field azimuth. Despite this alignment, the analysis also shows that there is a non-negligible dispersion. In penumbral filaments, we find a dispersion with a standard deviation of similar to 16 degrees, while this dispersion goes up to similar to 34 degrees in less magnetized regions.
  •  
25.
  • Asensio Ramos, A., et al. (author)
  • Inversion of Stokes profiles with systematic effects
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Journal article (peer-reviewed)abstract
    • Quantitative thermodynamical, dynamical and magnetic properties of the solar and stellar plasmas are obtained by interpreting their emergent non-polarized and polarized spectrum. This inference requires the selection of a set of spectral lines that are particularly sensitive to the physical conditions in the plasma and a suitable parametric model of the solar/stellar atmosphere. Nonlinear inversion codes are then used to fit the model to the observations. However, the presence of systematic effects, like nearby or blended spectral lines, telluric absorption, or incorrect correction of the continuum, among others, can strongly affect the results. We present an extension to current inversion codes that can deal with these effects in a transparent way. The resulting algorithm is very simple and can be applied to any existing inversion code with the addition of a few lines of code as an extra step in each iteration.
  •  
26.
  • Díaz Baso, Carlos José, et al. (author)
  • Diagnostic potential of the Ca II 8542 Ångstrom line for solar filaments
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Journal article (peer-reviewed)abstract
    • Aims. In this study we explore the diagnostic potential of the chromospheric Ca II line at 8542 angstrom for studying the magnetic and dynamic properties of solar filaments. We have acquired high spatial resolution spectropolarimetric observations in the Ca II 8542 angstrom line using the CRISP instrument at the Swedish 1 m Solar Telescope. Methods. We used the NICOLE inversion code to infer physical properties from observations of a solar filament. We discuss the validity of the results due to the assumption of hydrostatic equilibrium. We have used observations from other telescopes such as CHROTEL and SDO, in order to study large scale dynamics and the long term evolution of the filament. Results. We show that the Ca II 8542 angstrom line encodes information of the temperature, line-of-sight velocity and magnetic field vector from the region where the filament is located. The current noise levels only allow us to estimate an upper limit of 260 G for the total magnetic field of the filament. Our study also reveals that if we consider information from the aforementioned spectral line alone, the geometric height, the temperature and the density could be degenerated parameters outside the hydrostatic equilibrium approach.
  •  
27.
  • Diaz Baso, Carlos José, et al. (author)
  • Spectropolarimetric analysis of an active region filament I. Magnetic and dynamical properties from single component inversions
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 625
  • Journal article (peer-reviewed)abstract
    • Aims. The determination of the magnetic filed vector in solar filaments is made possible by interpreting the Hanle and Zeeman effects in suitable chromospheric spectral lines like those of the He I multiplet at 10 830 angstrom. We study the vector magnetic field of an active region filament (NOAA 12087). Methods. Spectropolarimetric data of this active region was acquired with the GRIS instrument at the GREGOR telescope and studied simultaneously in the chromosphere with the He I 10 830 angstrom multiplet and in the photosphere Si I 10 827 angstrom line. As has been done in previous studies, only a single-component model was used to infer the magnetic properties of the filament. The results are put into a solar context with the help of the Solar Dynamic Observatory images. Results. Some results clearly point out that a more complex inversion had to be performed. First, the Stokes V map of He I does not show a clear signature of the presence of the filament. Second, the local azimuth map follows the same pattern as Stokes V; it appears that polarity of Stokes V is conditioning the inference to very different magnetic fields even with similar linear polarization signals. This indication suggests that the Stokes V could be dominated from below by the magnetic field coming from the active region, and not from the filament itself. This evidence, and others, will be analyzed in depth and a more complex inversion will be attempted in the second part of this series.
  •  
28.
  • Diaz Baso, Carlos José, et al. (author)
  • Spectropolarimetric analysis of an active region filament. II. Evidence of the limitations of a single-component model
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 625
  • Journal article (peer-reviewed)abstract
    • Aims. Our aim is to demonstrate the limitations of using a single-component model to study the magnetic field of an active region filament. To do this, we analyzed the polarimetric signals of the He I 10830 angstrom multiplet, which were acquired with the Infrared spectrograph GRIS of the GREGOR telescope (Tenerife, Spain). Methods. After a first analysis of the general properties of the filament using HAZEL under the assumption of a single-component model atmosphere, in this second part we focus our attention on the observed Stokes profiles and the signatures that cannot be explained with this model. Results. We have found an optically thick filament whose blue and red components have the same sign in the linear polarization as an indication of radiative transfer effects. Moreover, the circular polarization signals inside the filament show strong magnetic field gradients. We also show that even a filament with such high absorption still shows signatures of the circular polarization that is generated by the magnetic field below the filament. The reason is that the absorption of the spectral line decays very quickly toward the wings, just where the circular polarization has a larger amplitude. In order to separate the two contributions, we explore the possibility of a two-component model, but the Inference becomes impossible to overcome because very many solutions are compatible with the observations.
  •  
29.
  •  
30.
  •  
31.
  • Martinez Gonzalez, M. J., et al. (author)
  • SPECTRO-POLARIMETRIC IMAGING REVEALS HELICAL MAGNETIC FIELDS IN SOLAR PROMINENCE FEET
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 802:1
  • Journal article (peer-reviewed)abstract
    • Solar prominences are clouds of cool plasma levitating above the solar surface and insulated from the million-degree corona by magnetic fields. They form in regions of complex magnetic topology, characterized by non-potential fields, which can evolve abruptly, disintegrating the prominence and ejecting magnetized material into the heliosphere. However, their physics is not yet fully understood because mapping such complex magnetic configurations and their evolution is extremely challenging, and must often be guessed by proxy from photometric observations. Using state-of-the-art spectro-polarimetric data, we reconstruct the structure of the magnetic field in a prominence. We find that prominence feet harbor helical magnetic fields connecting the prominence to the solar surface below.
  •  
32.
  • Pastor Yabar, Adur, et al. (author)
  • Polarimetric characterization of segmented mirrors
  • 2022
  • In: Applied Optics. - 1559-128X .- 2155-3165. ; 61:16, s. 4908-4918
  • Journal article (peer-reviewed)abstract
    • We study the impact of the loss of axial symmetry around the optical axis on the polarimetric properties of a telescope with a segmented primary mirror when each segment is present in a different aging stage. The different oxidation stage of each segment as it is substituted in time leads to nonnegligible cross-talk terms. This effect is wavelength dependent, and it is mainly determined by the properties of the reflecting material. For an aluminum coating, the worst polarimetric behavior due to oxidation is found for the blue part of the visible. Contrarily, dust—as modeled in this work—does not significantly change the polarimetric behavior of the optical system. Depending on the telescope, there might be segment substitution sequences that strongly attenuate this instrumental polarization.
  •  
33.
  • Pozuelo, S. Esteban, et al. (author)
  • Estimating the longitudinal magnetic field in the chromosphere of quiet-Sun magnetic concentrations
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 672
  • Journal article (peer-reviewed)abstract
    • Context. Details of the magnetic field in the quiet-Sun chromosphere are key to our understanding of essential aspects of the solar atmosphere. However, the strength and orientation of this magnetic field have not been thoroughly studied at high spatial resolution.Aims. We aim to determine the longitudinal magnetic field component (B∥) of quiet-Sun regions depending on their size.Methods. We estimated B∥ by applying the weak-field approximation to high-spatial-resolution Ca II 854.2 nm data taken with the Swedish 1 m Solar Telescope. Specifically, we analyzed the estimates inferred for different spectral ranges using the data at the original cadence and temporally integrated signals.Results. The longitudinal magnetic field in each considered plasma structure correlates with its size. Using a spectral range restricted to the line core leads to chromospheric longitudinal fields varying from ∼50 G at the edges to 150–500 G at the center of the structure. These values increase as the spectral range widens due to the photospheric contribution. However, the difference between this contribution and the chromospheric one is not uniform for all structures. Small and medium-sized concentrations show a steeper height gradient in B∥ compared to their chromospheric values, so estimates for wider ranges are less trustworthy. Signal addition does not alleviate this situation as the height gradients in B∥ are consistent with time. Finally, despite the amplified noise levels that deconvolving processes may cause, data restored with the destretching technique show similar results, though are affected by smearing.Conclusions. We obtained B∥ estimates similar to those previously found, except for large concentrations and wide spectral ranges. In addition, we report a correlation between the height variation of B∥ compared to the chromospheric estimates and the concentration size. This correlation affects the difference between the photospheric and chromospheric magnetic flux values and the reliability of the estimates for wider spectral ranges.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-33 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view