SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Auriemma R) "

Search: WFRF:(Auriemma R)

  • Result 1-50 of 66
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
2.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
3.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
26.
  •  
27.
  •  
28.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Journal article (peer-reviewed)
  •  
29.
  •  
30.
  •  
31.
  • Labit, B., et al. (author)
  • Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:8
  • Journal article (peer-reviewed)abstract
    • © 2019 Institute of Physics Publishing. All rights reserved. Within the EUROfusion MST1 work package, a series of experiments has been conducted on AUG and TCV devices to disentangle the role of plasma fueling and plasma shape for the onset of small ELM regimes. On both devices, small ELM regimes with high confinement are achieved if and only if two conditions are fulfilled at the same time. Firstly, the plasma density at the separatrix must be large enough (ne,sep/nG ∼ 0.3), leading to a pressure profile flattening at the separatrix, which stabilizes type-I ELMs. Secondly, the magnetic configuration has to be close to a double null (DN), leading to a reduction of the magnetic shear in the extreme vicinity of the separatrix. As a consequence, its stabilizing effect on ballooning modes is weakened.
  •  
32.
  • Coda, S., et al. (author)
  • Physics research on the TCV tokamak facility: From conventional to alternative scenarios and beyond
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Journal article (peer-reviewed)abstract
    • The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power 'starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added.
  •  
33.
  • Ambrosio, M, et al. (author)
  • The MACRO detector at Gran Sasso
  • 2002
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 486:3, s. 663-707
  • Journal article (peer-reviewed)abstract
    • MACRO was an experiment that ran in the Laboratori Nazionali del Gran Sasso from 1988 to 2000. Its principal goal was to observe magnetic monopoles or set significantly lower experimental flux limits than had been previously available in the velocity range from about beta = 10(-4) to unity. In addition it made a variety of other observations. Examples are: setting flux limits on other so far unobserved particles such as nuclearites and lightly ionizing particles, searching for WIMP annihilations in the Earth and the Sun and for neutrino bursts from stellar collapses in or near our Galaxy, and making measurements relevant to high energy muon and neutrino astronomy and of the flux of up-going muons as a function of nadir angle showing evidence for neutrino oscillations. The apparatus consisted of three principal types of detectors: liquid scintillator counters, limited streamer tubes, and nuclear track etch detectors. In addition, over part of its area it contained a transition radiation detector. The general design philosophy emphasized redundancy and complementarity. This paper describes the technical aspects of the complete MACRO detector, its operational performance, and the techniques used to calibrate it and verify its proper operation. It supplements a previously published paper which described the first portion of the detector that was built and operated. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
34.
  • Martin, P., et al. (author)
  • Overview of the RFX-mod fusion science programme
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104018-
  • Research review (peer-reviewed)abstract
    • This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q edge < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes.
  •  
35.
  • Ambrosio, M, et al. (author)
  • A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector
  • 2002
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 18:1, s. 27-41
  • Journal article (peer-reviewed)abstract
    • We describe a search method for fast moving (beta = v/c > 5 x 10(-3)) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two-years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5 x 10(-15) cm(-2) s(-1) sr(-1) in the velocity range 5 x 10(-3) less than or equal to beta less than or equal to 0.99 and for nucleon decay catalysis cross-section smaller than similar to1 mb (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
36.
  • Ambrosio, M, et al. (author)
  • Final results of magnetic monopole searches with the MACRO experiment
  • 2002
  • In: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 25:4, s. 511-522
  • Journal article (peer-reviewed)abstract
    • We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4 x 10(-5) < 3 < 1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways. No candidates were detected and a 90% Confidence Level (C.L.) upper limit to the local magnetic monopole flux was set at the level of 1.4 x 10(-16) cm(-2) s(-1) sr(-1). This result is the first experimental limit obtained in direct searches which is well below the Parker bound in the whole 3 range in which GUT magnetic monopoles are,expected.
  •  
37.
  • Ambrosio, M, et al. (author)
  • Matter effects in upward-going muons and sterile neutrino oscillations
  • 2001
  • In: Physics Letters B. - : Elsevier. - 0370-2693 .- 1873-2445. ; 517:1-2, s. 59-66
  • Journal article (peer-reviewed)abstract
    • The angular distribution of upward-going muons produced by atmospheric neutrinos in the rock below the MACRO detector shows anomalies in good agreement with two flavor nu (mu) --> nu (tau) oscillations with maximum mixing and Deltam(2) around 0.0024 eV(2). Exploiting the dependence of magnitude of the matter effect on oscillation channel, and using a set of 809 upward-going muons observed in MACRO, we show that the two flavor nu (mu) --> nu (s) oscillation is disfavored with 99% C.L. with respect to nu (mu) --> nu (tau). (C) 2001 Elsevier Science B.V. All rights reserved.
  •  
38.
  • Ambrosio, M, et al. (author)
  • Muon energy estimate through multiple scattering with the MACRO detector
  • 2002
  • In: Nuclear Instruments and Methods in Physics Research Section A. - 0168-9002 .- 1872-9576. ; 492:3, s. 376-386
  • Journal article (peer-reviewed)abstract
    • Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E-mu < 40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
39.
  • Ambrosio, M, et al. (author)
  • Search for cosmic ray sources using muons detected by the MACRO experiment
  • 2003
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 18:6, s. 615-627
  • Journal article (peer-reviewed)abstract
    • The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known gamma-ray sources are also proved negative. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
40.
  • Ambrosio, M, et al. (author)
  • Search for diffuse neutrino flux from astrophysical sources with MACRO
  • 2003
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 19:1, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high-energy upward-going muons among the sample of data collected by MACRO during similar to5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7 x 10(-14) cm(-2) s(-1) sr(-1). The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
  •  
41.
  • Ambrosio, M, et al. (author)
  • Search for nucleon decays induced by GUT magnetic monopoles with the MACRO experiment
  • 2002
  • In: European Physical Journal C. - : Springer. - 1434-6044 .- 1434-6052. ; 26:2, s. 163-172
  • Journal article (peer-reviewed)abstract
    • The interaction of a Grand Unification Magnetic Monopole with a nucleon can lead to a barion-number violating process in which the nucleon decays into a lepton and one or more mesons (catalysis of nucleon decay). In this paper we report an experimental study of the effects of a catalysis process in the MACRO detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux upper limits at the level of similar to 3 (.) 10(-16) cm(-2) s(-1) sr(-1) for 1.1(.) 10(-4) less than or equal to \beta\ less than or equal to 5 (.) 10(-3), based on the search for catalysis events in the MACRO data. We also analyze the dependence of the MM flux limit on the catalysis cross section.
  •  
42.
  • Togo, V, et al. (author)
  • Calibrations of CR39 and Makrofol nuclear track detectors and search for exotic particles
  • 2003
  • In: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 125, s. 217-221
  • Journal article (peer-reviewed)abstract
    • We present the final results of the search for exotic massive particles in the cosmic radiation performed with the MACRO underground experiment. Magnetic monopoles and nuclearites flux upper limits obtained with the CR39 nuclear track subdetector, the scintillation and streamer tube subdetectors are given. Searches at high altitude with the SLIM experiment are in progress.
  •  
43.
  • Martin, P., et al. (author)
  • Overview of the RFX fusion science program
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 51:9, s. 094023-
  • Journal article (peer-reviewed)abstract
    • This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature >1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented.
  •  
44.
  • Zuin, M., et al. (author)
  • Overview of the RFX-mod fusion science activity
  • 2017
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Journal article (peer-reviewed)abstract
    • This paper reports the main recent results of the RFX-mod fusion science activity. The RFX-mod device is characterized by a unique flexibility in terms of accessible magnetic configurations. Axisymmetric and helically shaped reversed-field pinch equilibria have been studied, along with tokamak plasmas in a wide range of q(a) regimes (spanning from 4 down to 1.2 values). The full range of magnetic configurations in between the two, the so-called ultra-low q ones, has been explored, with the aim of studying specific physical issues common to all equilibria, such as, for example, the density limit phenomenon. The powerful RFX-mod feedback control system has been exploited for MHD control, which allowed us to extend the range of experimental parameters, as well as to induce specific magnetic perturbations for the study of 3D effects. In particular, transport, edge and isotope effects in 3D equilibria have been investigated, along with runaway mitigations through induced magnetic perturbations. The first transitions to an improved confinement scenario in circular and D-shaped tokamak plasmas have been obtained thanks to an active modification of the edge electric field through a polarized electrode. The experiments are supported by intense modeling with 3D MHD, gyrokinetic, guiding center and transport codes. Proposed modifications to the RFX-mod device, which will enable further contributions to the solution of key issues in the roadmap to ITER and DEMO, are also briefly presented.
  •  
45.
  • Terranova, D., et al. (author)
  • A 3D approach to equilibrium, stability and transport studies in RFX-mod improved regimes
  • 2010
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 52:12, s. 124023-
  • Journal article (peer-reviewed)abstract
    • The full three-dimensional (3D) approach is now becoming an important issue for all magnetic confinement configurations. It is a necessary condition for the stellarator but also the tokamak and the reversed field pinch (RFP) now cannot be completely described in an axisymmetric framework. For the RFP the observation of self-sustained helical configurations with improved plasma performances require a better description in order to assess a new view on this configuration. In this new framework plasma configuration studies for RFX-mod have been considered both with tools developed for the RFP as well as considering codes originally developed for the stellarator and adapted to the RFP. These helical states are reached through a transition to a very low/reversed shear configuration leading to internal electron transport barriers. These states are interrupted by MHD reconnection events and the large Te gradients at the barriers indicate that both current and pressure driven modes are to be considered. Furthermore the typically flat Te profiles in the helical core have raised the issue of the role of electrostatic and electromagnetic turbulence in these reduced chaos regions, so that a stability analysis in the correct 3D geometry is required to address an optimization of the plasma setup. In this viewtheVMECcode proved to be an effectiveway to obtain helical equilibria to be studied in terms of stability and transport with a suite of well tested codes. In this work, the equilibrium reconstruction technique as well as the experimental evidence of 3D effects and their first interpretation in terms of stability and transport are presented using both RFP and stellarator tools.
  •  
46.
  • Litaudon, X., et al. (author)
  • 14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
  •  
47.
  • Lorenzini, R., et al. (author)
  • Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas
  • 2009
  • In: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 5:8, s. 570-574
  • Journal article (peer-reviewed)abstract
    • In the quest for new energy sources, the research on controlled thermonuclear fusion has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.
  •  
48.
  • Martin, P., et al. (author)
  • Overview of RFX-mod results
  • 2009
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 49:10, s. 104019-
  • Journal article (peer-reviewed)abstract
    • With the exploration of the MA plasma current regime in up to 0.5 s long discharges, RFX-mod has opened new and very promising perspectives for the reversed field pinch (RFP) magnetic configuration, and has made significant progress in understanding and improving confinement and in controlling plasma stability. A big leap with respect to previous knowledge and expectations on RFP physics and performance has been made by RFX-mod since the last 2006 IAEA Fusion Energy Conference. A new self-organized helical equilibrium has been experimentally achieved ( the Single Helical Axis-SHAx-state), which is the preferred state at high current. Strong core electron transport barriers characterize this regime, with electron temperature gradients comparable to those achieved in tokamaks, and by a factor of 4 improvement in confinement time with respect to the standard RFP. RFX-mod is also providing leading edge results on real-time feedback control of MHD instabilities, of general interest for the fusion community.
  •  
49.
  • Puiatti, M. E., et al. (author)
  • Helical equilibria and magnetic structures in the reversed field pinch and analogies to the tokamak and stellarator
  • 2009
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 51:12, s. 124031-
  • Journal article (peer-reviewed)abstract
    • The reversed field pinch configuration is characterized by the presence of magnetic structures both in the core and at the edge: in the core, at high plasma current the spontaneous development of a helical structure is accompanied by the appearance of internal electron transport barriers; at the edge strong pressure gradients, identifying an edge transport barrier, are observed too, related to the position of the field reversal surface. The aim of this paper is the experimental characterization of both the internal and edge transport barriers in relation to the magnetic topology, discussing possible analogies and differences with other confinement schemes.
  •  
50.
  • Hobirk, J., et al. (author)
  • The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium
  • 2023
  • In: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 63:11
  • Journal article (peer-reviewed)abstract
    • The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 66

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view