SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baglio M. C.) "

Search: WFRF:(Baglio M. C.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Russell, T. D., et al. (author)
  • Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535-571
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:4, s. 5772-5785
  • Journal article (peer-reviewed)abstract
    • We present results from six epochs of quasi-simultaneous radio, (sub-)millimetre, infrared, optical, and X-ray observations of the black hole X-ray binary MAXI J1535-571. These observations show that as the source transitioned through the hard-intermediate X-ray state towards the soft-intermediate X-ray state, the jet underwent dramatic and rapid changes. We observed the frequency of the jet spectral break, which corresponds to the most compact region in the jet where particle acceleration begins (higher frequencies indicate closer to the black hole), evolves from the infrared band into the radio band (decreasing by approximate to 3 orders of magnitude) in less than a day. During one observational epoch, we found evidence of the jet spectral break evolving in frequency through the radio band. Estimating the magnetic field and size of the particle acceleration region shows that the rapid fading of the high-energy jet emission was not consistent with radiative cooling; instead, the particle acceleration region seems to be moving away from the black hole on approximately dynamical time-scales. This result suggests that the compact jet quenching is not caused by local changes to the particle acceleration, rather we are observing the acceleration region of the jet travelling away from the black hole with the jet flow. Spectral analysis of the X-ray emission shows a gradual softening in the few days before the dramatic jet changes, followed by a more rapid softening similar to 1-2 d after the onset of the jet quenching.
  •  
2.
  • Russell, T. D., et al. (author)
  • Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 883:2
  • Journal article (peer-reviewed)abstract
    • MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array, as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved toward the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to = 0.69 c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs >2.5 days before the first appearance of a possible type-B QPO.
  •  
3.
  • Saikia, Payaswini, et al. (author)
  • A Multiwavelength Study of GRS 1716-249 in Outburst: Constraints on Its System Parameters
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 932:1
  • Journal article (peer-reviewed)abstract
    • We present a detailed study of the evolution of the Galactic black hole transient GRS 1716-249 during its 2016-2017 outburst at optical (Las Cumbres Observatory), mid-infrared (Very Large Telescope), near-infrared (Rapid Eye Mount telescope), and ultraviolet (the Neil Gehrels Swift Observatory Ultraviolet/Optical Telescope) wavelengths, along with archival radio and X-ray data. We show that the optical/near-infrared and UV emission of the source mainly originates from a multi-temperature accretion disk, while the mid-infrared and radio emission are dominated by synchrotron emission from a compact jet. The optical/UV flux density is correlated with the X-ray emission when the source is in the hard state, consistent with an X-ray irradiated accretion disk with an additional contribution from the viscous disk during the outburst fade. We find evidence for a weak, but highly variable jet component at mid-infrared wavelengths. We also report the long-term optical light curve of the source and find that the quiescent i'-band magnitude is 21.39 +/- 0.15 mag. Furthermore, we discuss how previous estimates of the system parameters of the source are based on various incorrect assumptions, and so are likely to be inaccurate. By comparing our GRS 1716-249 data set to those of other outbursting black hole X-ray binaries, we find that while GRS 1716-249 shows similar X-ray behavior, it is noticeably optically fainter, if the literature distance of 2.4 kpc is adopted. Using several lines of reasoning, we argue that the source distance is further than previously assumed in the literature, likely within 4-17 kpc, with a most likely range of similar to 4-8 kpc.
  •  
4.
  • Cristina Baglio, Maria, et al. (author)
  • A Wildly Flickering Jet in the Black Hole X-Ray Binary MAXI J1535-571
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 867:2
  • Journal article (peer-reviewed)abstract
    • We report on the results of optical, near-infrared (NIR), and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535-571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004-58012), the source shows an optical-NIR spectrum that is consistent with an optically thin synchrotron power law from a jet. After MJD 58015, however, the source faded considerably, the drop in flux being much more evident at lower frequencies. Before the fading, we measure a dereddened flux density of 100 mJy in the mid-infrared, making MAXI J1535-571 one of the brightest mid-infrared BHBs known so far. A significant softening of the X-ray spectrum is evident contemporaneous with the infrared fade. We interpret it as being due to the suppression of the jet emission, similar to the accretion-ejection coupling seen in other BHBs. However, MAXI J1535-571 did not transition smoothly to the soft state, instead showing X-ray hardness deviations associated with infrared flaring. We also present the first mid-IR variability study of a BHB on minute timescales, with a fractional rms variability of the light curves of ∼15%-22%, which is similar to that expected from the internal shock jet model, and much higher than the optical fractional rms (≲7%). These results represent an excellent case of multiwavelength jet spectral timing and demonstrate how rich, multiwavelength time-resolved data of X-ray binaries over accretion state transitions can help in refining models of the disk-jet connection and jet launching in these systems.
  •  
5.
  • Vincentelli, F. M., et al. (author)
  • Fast infrared variability from the black hole candidate MAXI J1535-571 and tight constraints on the modelling
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:1, s. 614-624
  • Journal article (peer-reviewed)abstract
    • We present the results regarding the analysis of the fast X-ray/infrared (IR) variability of the black hole transient MAXI J1535-571. The data studied in thiswork consist of two strictly simultaneous observations performed with XMM-Newton (X-rays: 0.7-10 keV), VLT/HAWK-I (K-s band, 2.2 mu m) andVLT/VISIR (Mand PAH2 2 bands, 4.85 and 11.88 mu m, respectively). The cross-correlation function between the X-ray and near-IR light curves shows a strong asymmetric anticorrelation dip at positive lags. We detect a near-IR QPO (2.5 sigma) at 2.07 +/- 0.09 Hz simultaneously with an X-ray QPO at approximately the same frequency (f(0) = 2.25 +/- 0.05). From the cross-spectral analysis, a lag consistent with zero was measured between the two oscillations. We also measure a significant correlation between the average near-IR and mid-IR fluxes during the second night, but find no correlation on short time-scales. We discuss these results in terms of the two main scenarios for fast IR variability (hot inflow and jet powered by internal shocks). In both cases, our preliminary modelling suggests the presence of a misalignment between the disc and jet.
  •  
6.
  • Echiburu-Trujillo, Constanza, et al. (author)
  • Chasing the Break: Tracing the Full Evolution of a Black Hole X-Ray Binary Jet with Multiwavelength Spectral Modeling
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 962:2
  • Journal article (peer-reviewed)abstract
    • Black hole (BH) X-ray binaries (XRBs) are ideal targets to study the connection between accretion inflow and jet outflow. Here we present quasi-simultaneous, multiwavelength observations of the Galactic BH system MAXI J1820+070, throughout its 2018-2019 outburst. Our data set includes coverage from the radio through X-ray bands from 17 different instruments/telescopes, and encompasses 19 epochs over a 7 month period, resulting in one of the most well-sampled multiwavelength data sets of a BH XRB outburst to date. With our data, we compile and model the broadband spectra of this source using a phenomenological model that includes emission from the jet, a companion star, and an accretion flow. This modeling allows us to track the evolution of the spectral break in the jet spectrum, a key observable that samples the jet launching region. We find that the spectral break location changes over at least approximate to 3 orders of magnitude in electromagnetic frequency over this period. Using these spectral break measurements, we link the full cycle of jet behavior, including the rising, quenching, and reignition, to the changing accretion flow properties as the source evolves through its different accretion states. Our analysis shows consistent jet behavior with other sources in similar phases of their outbursts, reinforcing the idea that jet quenching and recovery may be a global feature of BH XRB systems in outburst. Our results also provide valuable evidence supporting a close connection between the geometry of the inner accretion flow and the base of the jet.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view