SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Balasubramanian D) "

Search: WFRF:(Balasubramanian D)

  • Result 1-50 of 57
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Kasliwal, M. M., et al. (author)
  • Illuminating gravitational waves : A concordant picture of photons from a neutron star merger
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1559-
  • Journal article (peer-reviewed)abstract
    • Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Akbari, Parsa, et al. (author)
  • Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity
  • 2021
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 373:6550
  • Journal article (peer-reviewed)abstract
    • Large-scale human exome sequencing can identify rare protein-coding variants with a large impact on complex traits such as body adiposity. We sequenced the exomes of 645,626 individuals from the United Kingdom, the United States, and Mexico and estimated associations of rare coding variants with body mass index (BMI). We identified 16 genes with an exome-wide significant association with BMI, including those encoding five brain-expressed G protein-coupled receptors (CALCR, MC4R, GIPR, GPR151, and GPR75). Protein-truncating variants in GPR75 were observed in ∼4/10,000 sequenced individuals and were associated with 1.8 kilograms per square meter lower BMI and 54% lower odds of obesity in the heterozygous state. Knock out of Gpr75 in mice resulted in resistance to weight gain and improved glycemic control in a high-fat diet model. Inhibition of GPR75 may provide a therapeutic strategy for obesity.
  •  
16.
  • Axfors, Cathrine, et al. (author)
  • Association between convalescent plasma treatment and mortality in COVID-19 : a collaborative systematic review and meta-analysis of randomized clinical trials
  • 2021
  • In: BMC Infectious Diseases. - : BioMed Central (BMC). - 1471-2334. ; 21:1
  • Research review (peer-reviewed)abstract
    • Background: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, ). Methods: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. Results: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I-2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. Conclusions: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care.
  •  
17.
  • Verweij, Niek, et al. (author)
  • Germline Mutations in CIDEB and Protection against Liver Disease
  • 2022
  • In: New England Journal of Medicine. - 0028-4793. ; 387:4, s. 332-344
  • Journal article (peer-reviewed)abstract
    • BACKGROUND Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P=4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P=9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS Rare germline mutations in CIDEB conferred substantial protection from liver disease.
  •  
18.
  • Bahramy, M. S., et al. (author)
  • Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides
  • 2018
  • In: Nature Materials. - 1476-1122. ; 17:1, s. 21-27
  • Journal article (peer-reviewed)abstract
    • Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin- and angle-resolved photoemission, we find that these generically host a co-existence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.
  •  
19.
  •  
20.
  • Bianchi, M., et al. (author)
  • One-dimensional spin texture of Bi(441): Quantum spin Hall properties without a topological insulator
  • 2015
  • In: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 91:16
  • Journal article (peer-reviewed)abstract
    • The high index (441) surface of bismuth has been studied using scanning tunneling microscopy (STM), angle resolved photoemission spectroscopy (APRES), and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localized states are observed, both of which are linearly dispersing in one in-plane direction (k(x)), and dispersionless in the orthogonal in-plane direction (k(y)), and both of which have a Dirac-like crossing at k(x) = 0. Spin ARPES reveals a strong in-plane polarization, consistent with Rashba-like spin-orbit coupling. One state has a strong out-of-plane spin component, which matches with the miscut angle, suggesting its possible origin as an edge state. The electronic structure of Bi(441) has significant similarities with topological insulator surface states and is expected to support one-dimensional quantum spin Hall-like coupled spin-charge transport properties with inhibited backscattering, without requiring a topological insulator bulk.
  •  
21.
  •  
22.
  • Harrington, S. D., et al. (author)
  • Electronic structure of epitaxial half-Heusler Co1-xNixTiSb across the semiconductor to metal transition
  • 2018
  • In: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 113:9
  • Journal article (peer-reviewed)abstract
    • Here, we report on the growth, electronic, and surface properties of the electron-doped half-Heusler series Co1-xNixTiSb (001) grown by molecular beam epitaxy. High-quality epitaxial growth of thin films is achieved on InP (001) substrates using an InAlAs buffer layer for all nickel concentrations. The semiconductor to metal transition as a function of substitutional alloying was examined using electrical transport, Seebeck measurements, and angle-resolved photoemission spectroscopy (ARPES). Temperature-dependent electrical transport measurements of films with composition x ≤ 0.1 exhibit thermally activated behavior while x > 0.1 exhibit metallic behavior. Smooth, highly ordered film surfaces can be achieved following ex-situ transfer of the films and subsequent desorption of a sacrificial, protective antimony capping layer. Using this transfer technique, ARPES experiments were performed to investigate the effects of nickel alloying on the electronic band structure. An electron pocket is observed below the Fermi level at the bulk X point for compositions x > 0.1, in accordance with the crossover from semiconducting to metallic behavior observed in the transport measurements.
  •  
23.
  • Marković, Igor, et al. (author)
  • Electronically driven spin-reorientation transition of the correlated polar metal Ca3Ru2O7
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 117:27, s. 15524-15529
  • Journal article (peer-reviewed)abstract
    • The interplay between spin-orbit coupling and structural inversion symmetry breaking in solids has generated much interest due to the nontrivial spin and magnetic textures which can result. Such studies are typically focused on systems where large atomic number elements lead to strong spin-orbit coupling, in turn rendering electronic correlations weak. In contrast, here we investigate the temperature-dependent electronic structure of Ca3Ru2O7, a 4d oxide metal for which both correlations and spin-orbit coupling are pronounced and in which octahedral tilts and rotations combine to mediate both global and local inversion symmetry-breaking polar distortions. Our angle-resolved photoemission measurements reveal the destruction of a large hole-like Fermi surface upon cooling through a coupled structural and spinreorientation transition at 48 K, accompanied by a sudden onset of quasiparticle coherence. We demonstrate how these result from band hybridization mediated by a hidden Rashba-type spin- orbit coupling. This is enabled by the bulk structural distortions and unlocked when the spin reorients perpendicular to the local symmetry-breaking potential at the Ru sites. We argue that the electronic energy gain associated with the band hybridization is actually the key driver for the phase transition, reflecting a delicate interplay between spin-orbit coupling and strong electronic correlations and revealing a route to control magnetic ordering in solids.
  •  
24.
  • O’Neil, Galen C., et al. (author)
  • Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array
  • 2017
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:5, s. 1099-1104
  • Journal article (peer-reviewed)abstract
    • The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. (Ogi, Y.; et al. Struct. Dyn. 2015, 2, 034901; Chen, J.; Zhang, H.; Tomov, I. V.; Ding, X.; Rentzepis, P. M. Chem. Phys. Lett. 2007, 437, 50-55). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.
  •  
25.
  • Peterziel, H, et al. (author)
  • Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM
  • 2022
  • In: NPJ precision oncology. - : Springer Science and Business Media LLC. - 2397-768X. ; 6:1, s. 94-
  • Journal article (peer-reviewed)abstract
    • The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.
  •  
26.
  • Schulz, S., et al. (author)
  • Classical and cubic Rashba effect in the presence of in-plane 4f magnetism at the iridium silicide surface of the antiferromagnet GdIr2Si2
  • 2021
  • In: Physical Review B. - 2469-9950. ; 103:3
  • Journal article (peer-reviewed)abstract
    • We present a combined experimental and theoretical study of the two-dimensional electron states at the iridium-silicide surface of the antiferromagnet GdIr2Si2 above and below the Néel temperature. Using angle-resolved photoemission spectroscopy (ARPES) we find a significant spin-orbit splitting of the surface states in the paramagnetic phase. By means of ab initio density-functional-theory (DFT) calculations we establish that the surface electron states that reside in the projected band gap around the M¯ point exhibit very different spin structures which are governed by the conventional and the cubic Rashba effect. The latter is reflected in a triple spin winding, i.e., the surface electron spin reveals three complete rotations upon moving once around the constant energy contours. Below the Néel temperature, our ARPES measurements show an intricate photoemission intensity picture characteristic of a complex magnetic domain structure. The orientation of the domains, however, can be clarified from a comparative analysis of the ARPES data and their DFT modeling. To characterize a single magnetic domain picture, we resort to the calculations and scrutinize the interplay of the Rashba spin-orbit coupling field with the in-plane exchange field, provided by the ferromagnetically ordered 4f moments of the near-surface Gd layer.
  •  
27.
  • Shah, S, et al. (author)
  • Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  • 2020
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1, s. 163-
  • Journal article (peer-reviewed)abstract
    • Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.
  •  
28.
  • Siemann, Gesa R., et al. (author)
  • Spin-orbit coupled spin-polarised hole gas at the CrSe2-terminated surface of AgCrSe2
  • 2023
  • In: npj Quantum Materials. - 2397-4648. ; 8:1
  • Journal article (peer-reviewed)abstract
    • In half-metallic systems, electronic conduction is mediated by a single spin species, offering enormous potential for spintronic devices. Here, using microscopic-area angle-resolved photoemission, we show that a spin-polarised two-dimensional hole gas is naturally realised in the polar magnetic semiconductor AgCrSe2 by an intrinsic self-doping at its CrSe2-terminated surface. Through comparison with first-principles calculations, we unveil a striking role of spin-orbit coupling for the surface hole gas, unlocked by both bulk and surface inversion symmetry breaking, suggesting routes for stabilising complex magnetic textures in the surface layer of AgCrSe2.
  •  
29.
  •  
30.
  •  
31.
  • Anand, Shreya, et al. (author)
  • Collapsars as Sites of r-process Nucleosynthesis : Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:1
  • Journal article (peer-reviewed)abstract
    • One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producing r-process elements. Simulations have shown that 0.01–0.1 M⊙ of r-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of r-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity of r-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for r-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the r-process mass for these SNe. We also perform independent light curve fits to models without the r-process. We find that the r-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence of r-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of r-process ejecta mass or indicate whether all collapsars are completely devoid of r-process nucleosynthesis.
  •  
32.
  •  
33.
  • Cox, Angela, et al. (author)
  • A common coding variant in CASP8 is associated with breast cancer risk
  • 2007
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 352-358
  • Journal article (peer-reviewed)abstract
    • The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 -202 C --> A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3' UTR A --> G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9-15 studies, comprising 11,391-18,290 cases and 14,753-22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85-0.94) and 0.74 (95% c.i.: 0.62-0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; P(trend) = 1.1 x 10(-7)) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02-1.13) and 1.16 (95% c.i.: 1.08-1.25), respectively; P(trend) = 2.8 x 10(-5)). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.
  •  
34.
  • Das, Arkaprava, et al. (author)
  • Temperature-Dependent Cationic Doping-Driven Phonon Dynamics Investigation in CdO Thin Films Using Raman Spectroscopy
  • 2020
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 124:39, s. 21818-21828
  • Journal article (peer-reviewed)abstract
    • In the present work, undoped cadmium oxide (CdO)- and 1% Tin (Sn)-doped CdO thin films were prepared by the sol-gel route. These samples have been analyzed by temperature (T)-dependent (80-500 K) Raman spectroscopy and studied for their lattice dynamics and vibrational density of states. Results indicate that the room T synthesized pure CdO thin film manifests two prime second order features, that is, 300.5 cm(-1) transverse optical (TO) and 488 cm(-1) longitudinal optical (LO) phonon modes. However, incorporation of cationic-assisted impurity (Sn) with larger ionic radii results in a softening of the high-frequency LO (480.5 cm(-1)) mode via lattice deformation scattering potential. In fact, selective Sn doping increases the carrier concentration in the host CdO matrix which subsequently mitigates intraionic anharmonicity owing to increased Coulomb screening, leading to disappearance of the low-frequency TO mode (300.5 cm(-1)). In the case of pure CdO thin films, surface electron-induced electron-LO phonon coupling causes the intensity enhancement in LO modes, while negligible four-phonon anharmonic coupling results in lowering of full width at half maxima below Debye T. On the other hand, Fruhlich interaction in the polar LO phonon mode supersedes the impact of anharmonic decay and dominates the overall phonon decay process by impurity incorporation, via appropriate Sn doping. Theoretical phonon dispersion profiles throughout the Brillouin zone with increasing T suggests stronger TO phonon mode softening along with optical branch broadening followed by LO-TO splitting. The acoustic branch barely suffers any shift with changing T which cannot be observed in experimental spectra. However, the flexural phonon modes confer a direct indication of changed rigidity and bond stiffness with varying T. Overall, the present investigation provides experimental evidence regarding the significance of Debye T, below and above which the three- and four-phonon anharmonicity are feasible in phonon scattering in conjunction with theoretical insights.
  •  
35.
  • Demetris, A J, et al. (author)
  • 2016 Comprehensive Update of the Banff Working Group on Liver Allograft Pathology: Introduction of Antibody-Mediated Rejection.
  • 2016
  • In: American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. - : Elsevier BV. - 1600-6143. ; 16:10, s. 2816-2835
  • Journal article (peer-reviewed)abstract
    • The Banff Working Group on Liver Allograft Pathology reviewed and discussed literature evidence regarding antibody-mediated liver allograft rejection at the 11th (Paris, France, June 5-10, 2011), 12th (Comandatuba, Brazil, August 19-23, 2013), and 13th (Vancouver, British Columbia, Canada, October 5-10, 2015) meetings of the Banff Conference on Allograft Pathology. Discussion continued online. The primary goal was to introduce guidelines and consensus criteria for the diagnosis of liver allograft antibody-mediated rejection and provide a comprehensive update of all Banff Schema recommendations. Included are new recommendations for complement component 4d tissue staining and interpretation, staging liver allograft fibrosis, and findings related to immunosuppression minimization. In an effort to create a single reference document, previous unchanged criteria are also included.
  •  
36.
  •  
37.
  •  
38.
  • Garcia-Closas, Montserrat, et al. (author)
  • Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
  • 2008
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 4:4, s. e1000054-
  • Journal article (peer-reviewed)abstract
    • A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  • Kawasaki, Jason K., et al. (author)
  • A simple electron counting model for half-Heusler surfaces
  • 2018
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4
  • Journal article (peer-reviewed)abstract
    • Heusler compounds are a ripe platform for discovery and manipulation of emergent properties in topological and magnetic heterostructures. In these applications, the surfaces and interfaces are critical to performance; however, little is known about the atomic-scale structure of Heusler surfaces and interfaces or why they reconstruct. Using a combination of molecular beam epitaxy, core-level and angle-resolved photoemission, scanning tunneling microscopy, and density functional theory, we map the phase diagram and determine the atomic and electronic structures for several surface reconstructions of CoTiSb (001), a prototypical semiconducting half-Heusler. At low Sb coverage, the surface is characterized by Sb-Sb dimers and Ti vacancies, while, at high Sb coverage, an adlayer of Sb forms. The driving forces for reconstruction are charge neutrality and minimizing the number of Sb dangling bonds, which form metallic surface states within the bulk bandgap. We develop a simple electron counting model that explains the atomic and electronic structure, as benchmarked against experiments and first-principles calculations. We then apply the model to explain previous experimental observations at otherhalf-Heusler surfaces, including the topological semimetal PtLuSb and the half-metallic ferromagnet NiMnSb. The model provides a simple framework for understanding and predicting the surface structure and propertiesof these novel quantum materials.
  •  
45.
  • Kottwitz, Matthew, et al. (author)
  • Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO2
  • 2019
  • In: ACS Catalysis. - : AMER CHEMICAL SOC. - 2155-5435. ; 9:9, s. 8738-8748
  • Journal article (peer-reviewed)abstract
    • Single atom catalysts (SACs) have shown high activity and selectivity in a growing number of chemical reactions. Many efforts aimed at unveiling the structure-property relationships underpinning these activities and developing synthesis methods for obtaining SACs with the desired structures are hindered by the paucity of experimental methods capable of probing the attributes of local structure, electronic properties, and interaction with support-features that comprise key descriptors of their activity. In this work, we describe a combination of experimental and theoretical approaches that include photon and electron spectroscopy, scattering, and imaging methods, linked by density functional theory calculations, for providing detailed and comprehensive information on the atomic structure and electronic properties of SACs. This characterization toolbox is demonstrated here using a model single atom Pt/CeO2 catalyst prepared via a sol-gel-based synthesis method. Isolated Pt atoms together with extra oxygen atoms passivate the (100) surface of nanosized ceria. A detailed picture of the local structure of Pt nearest environment emerges from this work involving the bonding of isolated Pt2+ ions at the hollow sites of perturbed (100) surface planes of the CeO2 support, as well as a substantial (and heretofore unrecognized) strain within the CeO2 lattice in the immediate vicinity of the Pt centers. The detailed information on structural attributes provided by our approach is the key for understanding and improving the properties of SACs.
  •  
46.
  • Krab, Lianne C., et al. (author)
  • Delineation of phenotypes and genotypes related to cohesin structural protein RAD21
  • 2020
  • In: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 139:5, s. 575-592
  • Journal article (peer-reviewed)abstract
    • RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype–phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype–phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.
  •  
47.
  • Laverock, J., et al. (author)
  • k-resolved susceptibility function of 2H-TaSe2 from angle-resolved photoemission
  • 2013
  • In: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 88:3
  • Journal article (peer-reviewed)abstract
    • The connection between the Fermi surface and charge-density-wave (CDW) order is revisited in 2H-TaSe2. Using angle-resolved photoemission spectroscopy, ab initio band-structure calculations, and an accurate tight-binding model, we develop the empirical k-resolved susceptibility function, which we use to highlight states that contribute to the susceptibility for a particular q vector. We show that although the Fermi surface is involved in the peaks in the susceptibility associated with CDW order, it is not through conventional Fermi surface nesting, but rather through finite energy transitions from states located far from the Fermi level. Comparison with monolayer TaSe2 illustrates the different mechanisms that are involved in the absence of bilayer splitting.
  •  
48.
  • Laverock, J., et al. (author)
  • Photoemission evidence for crossover from Peierls-like to Mott-like transition in highly strained VO2
  • 2012
  • In: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 86:19
  • Journal article (peer-reviewed)abstract
    • We present a spectroscopic study that reveals that the metal-insulator transition of strained VO2 thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical strain. Comparison with a moderately strained system, which does involve the lattice, demonstrates the crossover from Peierls- to Mott-like transitions.
  •  
49.
  •  
50.
  • Mazzola, Federico, et al. (author)
  • The sub-band structure of atomically sharp dopant profiles in silicon
  • 2020
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 5:1
  • Journal article (peer-reviewed)abstract
    • The downscaling of silicon-based structures and proto-devices has now reached the single-atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic-scale device fabrication is the so-called Si:P δ-layer, consisting of an ultra-dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, it is on the Si:P platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the Si:P δ-layer platform. In this work, we use high-resolution angle-resolved photoemission spectroscopy to reveal the structure of the electronic states which exist because of the high dopant density of the Si:P δ-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight-binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the band structure has important implications for quantum proto-devices which are built on the Si:P δ-layer platform.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 57

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view