SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bally Marta) "

Search: WFRF:(Bally Marta)

  • Result 1-50 of 62
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abidine, Yara, et al. (author)
  • Cellular Chondroitin Sulfate and the Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes Simplex Virus 1 While Heparan Sulfate Restricts Mobility
  • 2022
  • In: Viruses. - : MDPI AG. - 1999-4915. ; 14:8
  • Journal article (peer-reviewed)abstract
    • The diffusion of viruses at the cell membrane is essential to reach a suitable entry site and initiate subsequent internalization. Although many viruses take advantage of glycosaminoglycans (GAG) to bind to the cell surface, little is known about the dynamics of the virus-GAG interactions. Here, single-particle tracking of the initial interaction of individual herpes simplex virus 1 (HSV-1) virions reveals a heterogeneous diffusive behavior, regulated by cell-surface GAGs with two main diffusion types: confined and normal free. This study reports that different GAGs can have competing influences in mediating diffusion on the cells used here: chondroitin sulfate (CS) enhances free diffusion but hinders virus attachment to cell surfaces, while heparan sulfate (HS) promotes virus confinement and increases entry efficiency. In addition, the role that the viral mucin-like domains (MLD) of the HSV-1 glycoprotein C plays in facilitating the diffusion of the virus and accelerating virus penetration into cells is demonstrated. Together, our results shed new light on the mechanisms of GAG-regulated virus diffusion at the cell surface for optimal internalization. These findings may be extendable to other GAG-binding viruses.
  •  
2.
  •  
3.
  • Agnarsson, Björn, 1977, et al. (author)
  • Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells
  • 2015
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 9:12, s. 11849-11862
  • Journal article (peer-reviewed)abstract
    • Advancement in the understanding of biomolecular interactions has benefited greatly from the development of surface-sensitive bioanalytical sensors. To further increase their broad impact, significant efforts are presently being made to enable label-free and specific biomolecule detection with high sensitivity, allowing for quantitative interpretation and general applicability at low cost. In this work, we have addressed this challenge by developing a waveguide chip consisting of a flat silica core embedded in a symmetric organic cladding with a refractive index matching that of water. This is shown to reduce stray light (background) scattering and thereby allow for label-free detection of faint objects, such as individual sub-20 rim gold nanoparticles as well as sub-100 nm lipid vesicles. Measurements and theoretical analysis revealed that light-scattering signals originating from single surface-bound lipid vesicles enable characterization of their sizes without employing fluorescent lipids as labels. The concept is also demonstrated for label-free measurements of protein binding to and enzymatic (phospholipase A2) digestion of individual lipid vesicles, enabling an analysis of the influence on the measured kinetics of the dye-labeling of lipids required in previous assays. Further, diffraction-limited imaging of cells (platelets) binding to a silica surface showed that distinct subcellular features could be visualized and temporally resolved during attachment, activation, and spreading. Taken together, these results underscore the versatility and general applicability of the method, which due to its simplicity and compatibility with conventional microscopy setups may reach a widespread in life science and beyond.
  •  
4.
  • Agnarsson, Björn, 1977, et al. (author)
  • Waveguide structure
  • 2018
  • Patent (other academic/artistic)abstract
    • A waveguide structure for evanescent wave microscopy and/or spectroscopy, comprising an optically transparent core layer, a lower dielectric cladding layer and an upper dielectric cladding layer arranged on opposite sides of the core layer. The core layer has a refractive index higher than the refractive indices of the cladding layers. The upper cladding layer is made of an organic material. A sample well is arranged on an upper surface of the core layer formed by a cavity in the upper cladding layer, the sample well being adapted to contain a sample medium with one or more sample objects. The core layer is made of a first dielectric inorganic material, and the upper cladding layer has a refractive index which closely matches the refractive index of the sample medium. A method for manufacturing such waveguide structure, and a measurement system comprising the waveguide structure are also disclosed.
  •  
5.
  • Alqabandi, Maryam, et al. (author)
  • The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization
  • 2021
  • In: BMC Biology. - : BioMed Central. - 1741-7007. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet.Results: Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect.Conclusions: We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.
  •  
6.
  • Altgärde, Noomi, 1983, et al. (author)
  • Mucin-like region of herpes simplex virus type 1 attachment protein gC modulates the virus-glycosaminoglycan interaction.
  • 2015
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:35, s. 21473-21485
  • Journal article (peer-reviewed)abstract
    • Glycoprotein C (gC) mediates the attachment of herpes simplex virus type 1 (HSV-1) to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying an HSV-1 mutant lacking the mucin- like domain in gC and the corresponding purified mutant protein (gCΔmuc), in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared to native HSV-1, i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells, and reduced release of viral particles from the surface of infected cells. Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared to native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.
  •  
7.
  • Bally, Marta, 1981, et al. (author)
  • A virus biosensor with single virus-particle sensitivity based on fluorescent vesicle labels and equilibrium fluctuation analysis
  • 2013
  • In: Biointerphases. - : American Vacuum Society. - 1559-4106 .- 1934-8630. ; 8
  • Journal article (peer-reviewed)abstract
    • Biosensors allowing for the rapid and sensitive detection of viral pathogens in environmental or clinical samples are urgently needed to prevent disease outbreaks and spreading. We present a bioanalytical assay for the detection of whole viral particles with single virus sensitivity. Specifically, we focus on the detection of human norovirus, a highly infectious virus causing gastroenteritis. In our assay configuration, virus-like particles are captured onto a supported lipid bilayer containing a virus-specific glycolipid and detected after recognition by a glycolipid-containing fluorescent vesicle. Read-out is performed after illumination of the vesicle labels by total internal reflection fluorescence microscopy. This allows for visualization of individual vesicles and for recording of their binding kinetics under equilibrium conditions (equilibrium fluctuation analysis), as demonstrated previously. In this work we extend the concept and demonstrate that this simple assay setup can be used as a bioanalytical assay for the detection of virus particles at a limit of detection of 16 fM. Furthermore, we demonstrate how the analysis of the single vesicle-virus-like particle interaction dynamics can contribute to increase the accuracy and sensitivity of the assay by discriminating specific from non-specific binding events. This method is suggested to be generally applicable, provided that these events display different interaction kinetics.
  •  
8.
  • Bally, Marta, 1981, et al. (author)
  • Fluorescent vesicles for signal amplification in reverse phase protein microarray assays
  • 2011
  • In: Analytical Biochemistry. - 0003-2697 .- 1096-0309. ; 416:2, s. 145-151
  • Journal article (peer-reviewed)abstract
    • Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip. We present a simple and generic method for signal amplification based on the use of antibody-tagged fluorescent vesicles as labels for signal generation. To assess the gain in assay sensitivity, we performed a model assay for the detection of rabbit immunoglobulin G (IgG) and compared the limit of detection (LOD) of the vesicle assay with the LOD of a conventional assay performed with fluorescent reporter molecules. We evaluated the improvements for two fluorescence-based transduction setups: a high-sensitivity microarray reader (ZeptoREADER) and a conventional confocal scanner. In all cases, our strategy led to an increase in sensitivity. However, gain in sensitivity widely depended on the type of illumination; whereas an approximately 2-fold increase in sensitivity was observed for readout based on evanescent field illumination, the contribution was as high as more than 200-fold for confocal scanning. (C) 2011 Elsevier Inc. All rights reserved.
  •  
9.
  • Bally, Marta, 1981, et al. (author)
  • Interaction of Single Viruslike Particles with Vesicles Containing Glycosphingolipids
  • 2011
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 107:18
  • Journal article (peer-reviewed)abstract
    • Glycosphingolipids are involved in the first steps of virus-cell interaction, where they mediate specific recognition of the host cell membrane. We have employed total-internal-reflection fluorescence microscopy to explore the interaction kinetics between individual unlabeled noroviruslike particles, which are attached to a glycosphingolipid-containing lipid bilayer, and fluorescent vesicles containing different types and concentrations of glycosphingolipids. Under association equilibrium, the vesicle-binding rate is found to be kinetically limited, yielding information on the corresponding activation energy. The dissociation kinetics are logarithmic over a wide range of time. The latter is explained by the vesicle-size-related distribution of the dissociation activation energy. The biological, pharmaceutical, and diagnostic relevance of the study is briefly discussed.
  •  
10.
  • Bally, Marta, 1981, et al. (author)
  • Interaction of virions with membrane glycolipids
  • 2012
  • In: Physical Biology. - : IOP Publishing. - 1478-3967 .- 1478-3975. ; 9:2
  • Journal article (peer-reviewed)abstract
    • Cellular membranes contain various lipids including glycolipids (GLs). The hydrophilic head groups of GLs extend from the membrane into the aqueous environment outside the cell where they act as recognition sites for specific interactions. The first steps of interaction of virions with cells often include contacts with GLs. To clarify the details of such contacts, we have used the total internal reflection fluorescence microscopy to explore the interaction of individual unlabelled virus-like particles (or, more specifically, norovirus protein capsids), which are firmly bound to a lipid bilayer, and fluorescent vesicles containing glycosphingolipids (these lipids form a subclass of GLs). The corresponding binding kinetics were earlier found to be kinetically limited, while the detachment kinetics were logarithmic over a wide range of time. Here, the detachment rate is observed to dramatically decrease with increasing concentration of glycosphingolipids from 1% to 8%. This effect has been analytically explained by using a generic model describing the statistics of bonds in the contact area between a virion and a lipid membrane. Among other factors, the model takes the formation of GL domains into account. Our analysis indicates that in the system under consideration, such domains, if present, have a characteristic size smaller than the contact area between the vesicle and the virus-like particle.
  •  
11.
  • Bally, Marta, et al. (author)
  • Lipid-based bioanalytical sensors
  • 2021
  • In: Handbook of lipid membranes. - Boca Raton : CRC Press. - 9781466555723 - 9781032014418 - 9780429194078 ; , s. 241-269
  • Book chapter (peer-reviewed)abstract
    • Lipid assemblies have attracted considerable interest as components in bioanalytical sensors. They provide a native-like environment for the immobilization of membrane proteins and for the study of membrane-related processes. Liposomes are also excellent bioanalytical assay components since selected functionalities can be added to the membrane while their aqueous interior can encapsulate a variety of molecules. This chapter highlights the potential of lipid assemblies in surface-based affinity sensors. It first describes how such sensors are created, providing an overview of lipid immobilization strategies together with a summary of the major transduction techniques used to probe binding at and transport through membrane interfaces. It then reviews the implementation of lipid-based sensors in the study of membrane proteins and membrane-mediated interactions, followed by a discussion of the potential of liposomes as nanoscale labels and as nanoreactors. Finally, it illustrates how external forces can be used to manipulate membrane component for biosensing applications.
  •  
12.
  • Bally, Marta, 1981, et al. (author)
  • Lipid-Based Bioanalytical Sensors
  • 2021
  • In: Handbook of Lipid Membranes Molecular, Functional, and Materials Aspects. - Boca Raton : CRC Press. - 9781466555730 ; , s. 241-270, s. 241-269
  • Book chapter (other academic/artistic)abstract
    • Lipid assemblies have attracted considerable interest as components in bioanalytical sensors. They provide a native-like environment for the immobilization of membrane proteins and for the study of membrane-related processes. Liposomes are also excellent bioanalytical assay components since selected functionalities can be added to the membrane while their aqueous interior can encapsulate a variety of molecules. This chapter highlights the potential of lipid assemblies in surface-based affinity sensors. It first describes how such sensors are created, providing an overview of lipid immobilization strategies together with a summary of the major transduction techniques used to probe binding at and transport through membrane interfaces. It then reviews the implementation of lipid-based sensors in the study of membrane proteins and membrane-mediated interactions, followed by a discussion of the potential of liposomes as nanoscale labels and as nanoreactors. Finally, it illustrates how external forces can be used to manipulate membrane component for biosensing applications.
  •  
13.
  • Bally, Marta, 1981, et al. (author)
  • Liposome and lipid bilayer arrays towards biosensing applications
  • 2010
  • In: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 6:22, s. 2481-2497
  • Journal article (peer-reviewed)abstract
    • Sensitive and selective biosensors for high-throughput screening are having an increasing impact in modern medical care. The establishment of robust protein biosensing platforms however remains challenging, especially when membrane proteins are involved. Although this type of proteins is of enormous relevance since they are considered in >60% of the pharmaceutical drug targets, their fragile nature (i.e., the requirement to preserve their natural lipid environment to avoid denaturation and loss of function) puts strong additional prerequisites onto a successful biochip. In this review, the leading approaches to create lipid membrane-based arrays towards the creation of membrane protein biosensing platforms are described. Liposomes assembled in micro- and nanoarrays and the successful set-ups containing functional membrane proteins, as well as the use of liposomes in networks, are discussed in the first part. Then, the complementary approaches to create cell-mimicking supported membrane patches on a substrate in an array format will be addressed. Finally, the progress in assembling free-standing (functional) lipid bilayers over nanopore arrays for ion channel sensing will be reported. This review illustrates the rapid pace by which advances are being made towards the creation of a heterogeneous biochip for the high-throughput screening of membrane proteins for diagnostics, drug screening, or drug discovery purposes.
  •  
14.
  • Bally, Marta, 1981, et al. (author)
  • Norovirus GII.4 Virus-like Particles Recognize Galactosylceramides in Domains of Planar Supported Lipid Bilayers.
  • 2012
  • In: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 51:48, s. 12020-4
  • Journal article (peer-reviewed)abstract
    • A sticky situation: Domain-dependent recognition of the glycosphingolipid galactosylceramide by norovirus-like particles (see picture; red/yellow) is shown using supported lipid bilayers (purple) as model membranes. Optimal ligand presentation is found to promote strong binding to GalCer. This presentation can be found at the edges of the glycosphingolipid-enriched domains (green) and binding is repressed in the absence of these domains.
  •  
15.
  • Bally, Marta, 1981, et al. (author)
  • Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context
  • 2021
  • In: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 413, s. 7157-7178
  • Journal article (peer-reviewed)abstract
    • The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
  •  
16.
  • Bally, Marta (author)
  • Regulating the dynamic interactions between herpes simplex viruses and cell -surface glycosaminoglycans
  • 2019
  • In: European Biophysics Journal. - : Springer. - 0175-7571 .- 1432-1017. ; 48, s. S41-S41
  • Journal article (other academic/artistic)abstract
    • Virus entry is a complex dynamic multistep process requiring a series of fine-tuned events mediating virus diffusion through the glycocalyx, its attachment to the cell membrane and lateral diffusion to the point of entry. A number of enveloped viruses, including herpes simplex viruses (HSV) attach to susceptible host cells via interaction between their glycoproteins and cell-surface glycosaminoglycans (GAGs). In our work, we study the molecular and physical mechanisms modulating HSV binding, diffusion and release from cell-surface glycosaminoglycans. Using single virus tracking in combination with either in vitro minimal models of the cell surface or live cell microscopy, we gain insights into the modulatory function of protein glycosylation (the presence of mucin-like regions on viral glycoproteins) and interrogate the role of GAG sulfation in the process. We show that mucin-like regions found on the glycoproteins of HSV-1 and HSV-2 play an important role in modulating the interaction, an observation further supported by cell experiments. We further show that the diffusion of virions on the surface depends on the type of GAGs and their degree of sulfation. Taken together, our research contributes to a better understanding of the mechanisms underlying the interaction between a virus and the surface of its host. Such insights will without doubt facilitate the design of more efficient antiviral drugs or vaccines.
  •  
17.
  • Becker, Miriam, et al. (author)
  • Efficient clathrin-mediated entry of enteric adenoviruses in human duodenal cells
  • 2023
  • In: Journal of Virology. - 0022-538X .- 1098-5514. ; 97:10
  • Journal article (peer-reviewed)abstract
    • Enteric adenovirus types F40 and 41 (EAdVs) are a leading cause of diarrhea and diarrhea-associated death in young children and have recently been proposed to cause acute hepatitis in children. EAdVs have a unique capsid architecture and exhibit — unlike other human adenoviruses — a relatively strict tropism for gastrointestinal tissues with, to date, understudied infection mechanism and unknown target cells. In this study, we turn to potentially limiting host factors by comparing EAdV entry in cell lines with respiratory and intestinal origin by cellular perturbation, virus particle tracking, and transmission electron microscopy. Our analyses highlight kinetic advantages for EAdVs in duodenal HuTu80 cell infection and reveal a larger fraction of mobile particles, faster virus uptake, and infectious particle entry in intestinal cells. Moreover, EAdVs display a dependence on clathrin- and dynamin-dependent pathways in intestinal cells. Detailed knowledge of virus entry routes and host factor requirements is essential to understanding pathogenesis and developing new countermeasures. Hence, this study provides novel insights into the entry mechanisms of a medically important virus with emerging tropism in a cell line originating from a relevant tissue. IMPORTANCE Enteric adenoviruses have historically been difficult to grow in cell culture, which has resulted in lack of knowledge of host factors and pathways required for infection of these medically relevant viruses. Previous studies in non-intestinal cell lines showed slow infection kinetics and generated comparatively low virus yields compared to other adenovirus types. We suggest duodenum-derived HuTu80 cells as a superior cell line for studies to complement efforts using complex intestinal tissue models. We show that viral host cell factors required for virus entry differ between cell lines from distinct origins and demonstrate the importance of clathrin-mediated endocytosis.
  •  
18.
  • Bernasconi, Valentina, 1989, et al. (author)
  • A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection
  • 2021
  • In: Mucosal Immunology. - : Elsevier BV. - 1933-0219 .- 1935-3456. ; 14:2, s. 523-536
  • Journal article (peer-reviewed)abstract
    • This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4(+)T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4(+)T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza.
  •  
19.
  • Bernasconi, Valentina, 1989, et al. (author)
  • Mucosal Vaccine Development Based on Liposome Technology
  • 2016
  • In: Journal of Immunology Research. - : Hindawi Limited. - 2314-8861 .- 2314-7156.
  • Journal article (peer-reviewed)abstract
    • Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination ofmucosal adjuvantswith the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines.
  •  
20.
  •  
21.
  • Conca, Dario Valter, et al. (author)
  • The role of membrane complexity in the early entry stages of SARS-CoV-2 variants
  • 2023
  • In: European Biophysics Journal. - 1432-1017 .- 0175-7571. ; 52:SUPPL 1, s. S176-S176
  • Conference paper (other academic/artistic)abstract
    • The highest density of mutations in SARS-CoV-2 variants is located on the spike glycoprotein (S), which is responsible for receptor ACE2 engagement. This suggests that SARS-CoV-2 is evolving to optimize viral entry. Several molecular studies report differences in the affinity between isolated S and ACE2 among variants. However, overall ACE2 affinity poorly correlates with the increased infectivity of recent variants. We address this discrepancy by considering the virus interaction with the whole plasma membrane and study the role of avidity and membrane complexity in modulating virus-host binding. To this end, we employ an in-vitro model system combining single-particle tracking and native supported lipid bilayers (nSLBs) made from lung epithelial cells. As virion mimics, we developed S-decorated liposomes that allow for direct comparison between variants and BSL-1 handling. Sliposome interaction with nSLBs showed a significant increase in avidity for Omicron compared to Delta and Wuhan strains. Further, using single-molecule force spectroscopy, we reveal a higher affinity for Omicron and Delta S to sensor immobilise heparan sulfate (HS). Our results indicate a shift in the variants’ attachment strategy towards more efficient use of coreceptors and the role of HS as an initial docking site that facilitates virus accumulation at the membrane and ACE2 engagement.
  •  
22.
  • de Lange, V., et al. (author)
  • Microarrays Made Easy: Biofunctionalized Hydrogel Channels for Rapid Protein Microarray Production
  • 2011
  • In: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 3:1, s. 50-57
  • Journal article (peer-reviewed)abstract
    • We present a simple, inexpensive, and sensitive technique for producing multiple copies of a hydrogel-based protein microarray. An agarose block containing 25 biofunctionalized channels is sliced perpendicularly to produce many identical biochips. Each microarray consists of 500 mu m spots, which contain protein-coated microparticles physically trapped in porous SeaPrep agarose. Proteins diffuse readily through SeaPrep agarose while the larger microparticles are immobilized in the hydrogel matrix Without major assay optimization the limit of detection is 12 pM for a sandwich assay detecting human IgG. These highly flexible, multiplexed arrays can produced rapidly without any special instrumentation and are compatible with standard fluorescence-based read-out.
  •  
23.
  • Delguste, Martin, et al. (author)
  • Regulatory Mechanisms of the Mucin-Like Region on Herpes Simplex Virus during Cellular Attachment
  • 2019
  • In: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8937 .- 1554-8929. ; 14:3, s. 534-542
  • Journal article (peer-reviewed)abstract
    • Mucin-like regions, characterized by a local high density of O-linked glycosylation, are found on the viral envelope glycoproteins of many viruses. Herpes simplex virus type 1 (HSV-1), for example, exhibits a mucin-like region on its glycoprotein gC, a viral protein involved in initial recruitment of the virus to the cell surface via interaction with sulfated glycosaminoglycans. So far, this mucin-like region has been proposed to play a key role in modulating the interactions with cellular glycosaminoglycans, and in particular to promote release of HSV-1 virions from infected cells. However, the molecular mechanisms and the role as a pathogenicity factor remains unclear. Using single virus particle tracking, we show that the mobility of chondroitin sulfate-bound HSV-1 virions is decreased in absence of the mucin-like region. This decrease in mobility correlates with an increase in HSV-1-chondroitin sulfate binding forces as observed using atomic force microscopy-based force spectroscopy. Our data suggest that the mucin-like region modulates virus-glycosaminoglycan interactions by regulating the affinity, type, and number of glycoproteins involved in the virus-glycosaminoglycan interaction. This study therefore presents new evidence for a role of the mucin-like region in balancing the interaction of HSV-1 with glycosaminoglycans and provides further insights into the molecular mechanisms used by the virus to ensure both successful cell entry and release from the infected cell.
  •  
24.
  • Emilsson, Gustav, et al. (author)
  • Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature
  • 2019
  • In: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 7:FEB
  • Journal article (peer-reviewed)abstract
    • Biosensors based on plasmonic nanostructures are widely used in various applications and benefit from numerous operational advantages. One type of application where nanostructured sensors provide unique value in comparison with, for instance, conventional surface plasmon resonance, is investigations of the influence of nanoscale geometry on biomolecular binding events. In this study, we show that plasmonic "nanowells" conformally coated with a continuous lipid bilayer can be used to detect the preferential binding of the insulin receptor tyrosine kinase substrate protein (IRSp53) I-BAR domain to regions of negative surface curvature, i.e., the interior of the nanowells. Two different sensor architectures with and without an additional niobium oxide layer are compared for this purpose. In both cases, curvature preferential binding of IRSp53 (at around 0.025 nm(-1) and higher) can be detected qualitatively. The high refractive index niobium oxide influences the near field distribution and makes the signature for bilayer formation less clear, but the contrast for accumulation at regions of negative curvature is slightly higher. This work shows the first example of analyzing preferential binding of an average-sized and biologically important protein to negative membrane curvature in a label-free manner and in real-time, illustrating a unique application for nanoplasmonic sensors.
  •  
25.
  • Friedrich, R., et al. (author)
  • A nano flow cytometer for single lipid vesicle analysis
  • 2017
  • In: Lab on a Chip - Miniaturisation for Chemistry and Biology. - : Royal Society of Chemistry (RSC). - 1473-0189 .- 1473-0197. ; 17:5, s. 830-841
  • Journal article (peer-reviewed)abstract
    • We present a nanofluidic device for fluorescence-based detection and characterization of small lipid vesicles on a single particle basis. The device works like a nano flow cytometer where individual vesicles are visualized by fluorescence microscopy while passing through parallel nanochannels in a pressure-driven flow. An experiment requires less than 20 mu l sample volume to quantify both the vesicle content and the fluorescence signals emitted by individual vesicles. We show that the device can be used to accurately count the number of fluorescent synthetic lipid vesicles down to a vesicle concentration of 170 fM. We also show that the size-distribution of the vesicles can be resolved from their fluorescence intensity distribution after calibration. We demonstrate the applicability of the assay in two different examples. In the first, we use the nanofluidic device to determine the particle concentration in a sample containing cell-derived extracellular vesicles labelled with a lipophilic dye. In the second, we demonstrate that dual-color detection can be used to probe peptide binding to synthetic lipid vesicles; we identify a positive membrane-curvature sensing behavior of an arginine enriched version of the Antennapedia homeodomain peptide penetratin. Altogether, these results illustrate the potential of this nanofluidic-based methodology for characterization and quantification of small biological vesicles and their interactors without ensemble averaging. The device is therefore likely to find use as a quantitative analytical tool in a variety of fields ranging from diagnostics to fundamental biology research. Moreover, our results have potential to facilitate further development of automated lab-on-a-chip devices for vesicle analysis.
  •  
26.
  • Gunnarsson, Anders, 1981, et al. (author)
  • Time-resolved surface-enhanced ellipsometric contrast imaging for label-free analysis of biomolecular recognition reactions on glycolipid domains
  • 2012
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 84:15, s. 6538-6545
  • Journal article (peer-reviewed)abstract
    • We have applied surface-enhanced ellipsometry contrast (SEEC) imaging for time-resolved label-free visualization of biomolecular recognition events on spatially heterogeneous supported lipid bilayers (SLB). Using a conventional inverted microscope equipped with total internal reflection (TIR) illumination, biomolecular binding events were monitored with a lateral resolution near the optical diffraction limit at an acquisition rate of ∼1 Hz with a sensitivity in terms of surface coverage of ∼1 ng/cm2. Despite the significant improvement in spatial resolution compared to alternative label-free surface-based imaging technologies, the sensitivity remains competitive with surface plasmon resonance (SPR) imaging and imaging ellipsometry. The potential of the technique to discriminate local differences in protein binding kinetics was demonstrated by time-resolved imaging of anti-GalCer antibodies binding to phase-separated lipid bilayers consisting of phosphatidylcholine (POPC) and galactosylceramide (GalCer). A higher antibody binding capacity was observed on the GalCer-diluted fluid region in comparison to the GalCer-rich gel phase domains. This observation is tentatively attributed to differences in the presentation of the GalCer epitope in the two phases, resulting in differences in availability of the ligand for antibody binding. The complementary information obtained by swiftly switching between SEEC and fluorescence (including TIR fluorescence) imaging modes was used to support the data interpretation. The simplicity and generic applicability of the concept is discussed in terms of microfluidic applications.
  •  
27.
  • Jõemetsa, Silver, 1990, et al. (author)
  • Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size
  • 2020
  • In: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 36:33, s. 9693-9700
  • Journal article (peer-reviewed)abstract
    • Advancements in nanoparticle characterization techniques are critical for improving the understanding of how biological nanoparticles (BNPs) contribute to different cellular processes, such as cellular communication, viral infection, as well as various drug-delivery applications. Since BNPs are intrinsically heterogeneous, there is a need for characterization methods that are capable of providing information about multiple parameters simultaneously, preferably at the single-nanoparticle level. In this work, fluorescence microscopy was combined with surface-based two-dimensional flow nanometry, allowing for simultaneous and independent determination of size and fluorescence emission of individual BNPs. In this way, the dependence of the fluorescence emission of the commonly used self-inserting lipophilic dye 3,3′-dioctadecyl-5,5′-di(4-sulfophenyl)oxacarbocyanine (SP-DiO) could successfully be correlated with nanoparticle size for different types of BNPs, including synthetic lipid vesicles, lipid vesicles derived from cellular membrane extracts, and extracellular vesicles derived from human SH-SY5Y cell cultures; all vesicles had a radius, r, of ∼50 nm and similar size distributions. The results demonstrate that the dependence of fluorescence emission of SP-DiO on nanoparticle size varies significantly between the different types of BNPs, with the expected dependence on membrane area, r2, being observed for synthetic lipid vesicles, while a significant weaker dependence on size was observed for BNPs with more complex composition. The latter observation is attributed to a size-dependent difference in membrane composition, which may influence either the optical properties of the dye and/or the insertion efficiency, indicating that the fluorescence emission of this type of self-inserting dye may not be reliable for determining size or size distribution of BNPs with complex lipid compositions.
  •  
28.
  • Junesch, Juliane, 1987, et al. (author)
  • Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature
  • 2015
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 7:37, s. 15080-15085
  • Journal article (peer-reviewed)abstract
    • The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids.
  •  
29.
  • Kirui, Jared, et al. (author)
  • The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry
  • 2021
  • In: Cells. - : MDPI. - 2073-4409. ; 10:7
  • Journal article (peer-reviewed)abstract
    • Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.
  •  
30.
  • Kunze, Angelika, 1978, et al. (author)
  • Equilibrium-fluctuation-analysis of single liposome binding events reveals how cholesterol and Ca2+ modulate glycosphingolipid trans-interactions
  • 2013
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 3
  • Journal article (peer-reviewed)abstract
    • Carbohydrate-carbohydrate interactions (CCIs) are of central importance for several biological processes. However, the ultra-weak nature of CCIs generates difficulties in studying this interaction, thus only little is known about CCIs. Here we present a highly sensitive equilibrium-fluctuation-analysis of single liposome binding events to supported lipid bilayers (SLBs) based on total internal reflection fluorescence (TIRF) microscopy that allows us to determine apparent kinetic rate constants of CCIs. The liposomes and SLBs both contained natural Le(x) glycosphingolipids (Gal beta 4( Fuc alpha 3) GlcNAc beta 3Gal beta 4Glc beta 1Cer), which were employed to mimic cell-cell contacts. The kinetic parameters of the self-interaction between Le(x)-containing liposomes and SLBs were measured and found to be modulated by bivalent cations. Even more interestingly, upon addition of cholesterol, the strength of the CCIs increases, suggesting that this interaction is strongly influenced by a cholesterol-dependent presentation and/or spatial organization of glycosphingolipids in cell membranes.
  •  
31.
  • Liu, Kang-Cheng, et al. (author)
  • Membrane insertion mechanism of the caveola coat protein Cavin1
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:25
  • Journal article (peer-reviewed)abstract
    • Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.
  •  
32.
  •  
33.
  •  
34.
  • Lubart, Quentin, 1989, et al. (author)
  • High throughput size-determination and multiplexed fluorescence analysis of single biological particles in a nanofluidic device
  • 2019
  • In: 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019. ; , s. 1420-1421
  • Conference paper (peer-reviewed)abstract
    • Biological nanoparticles, such as exosomes and viruses, are responsible for a multitude of important functions, but methods to characterize them on the single particle level are rare. We here present a nanofluidic platform for multi-parametric characterization of biological nanoparticles with high throughput. The device consists of feeding microchannels and an array of ~100 nanochannels where the nanoparticles can be characterized. We determine the size by analyzing the Brownian motion of the particles and quantify their content based on fluorescence imaging of up to three different colors. We successfully benchmark our method against existing techniques, such as Nanoparticle Tracking Analysis (NTA).
  •  
35.
  • Lubart, Quentin, 1989, et al. (author)
  • Lipid vesicle composition influences the incorporation and fluorescence properties of the lipophilic sulphonated carbocyanine dye SP-DiO
  • 2020
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 22:16, s. 8781-8790
  • Journal article (peer-reviewed)abstract
    • Lipophilic carbocyanine dyes are widely used as fluorescent cell membrane probes in studies ranging from biophysics to cell biology. While they are extremely useful for qualitative observation of lipid structures, a major problem impairing quantitative studies is that the chemical environment of the lipid bilayer affects both the dye's insertion efficiency and photophysical properties. We present a systematic investigation of the sulphonated carbocyanine dye 3,3′-dioctadecyl-5,5′-di(4-sulfophenyl) (SP-DiO) and demonstrate how its insertion efficiency into pre-formed lipid bilayers and its photophysical properties therein determine its apparent fluorescence intensity in different lipid environments. For this purpose, we use large unilamellar vesicles (LUVs) made of lipids with distinct chain unsaturation, acyl chain length, head group charge, and with variation in membrane cholesterol content as models. Using a combination of absorbance, fluorescence emission, and fluorescence lifetime measurements we reveal that SP-DiO incorporates more efficiently into liquid disordered phases compared to gel phases. Moreover, incorporation into the latter phase is most efficient when the mismatch between the length of the lipid and dye hydrocarbon chains is small. Furthermore, SP-DiO incorporation is less efficient in LUVs composed of negatively charged lipids. Lastly, when cholesterol was included in the LUV membranes, we observed significant spectral shifts, consistent with dye aggregation. Taken together, our study highlights the complex interplay between membrane composition and labeling efficiency with lipophilic dyes and advocates for careful assessment of fluorescence data when attempting a quantitative analysis of fluorescence data with such molecules.
  •  
36.
  • Mazur, Federico, et al. (author)
  • Liposomes and lipid bilayers in biosensors
  • 2017
  • In: Advances in Colloid and Interface Science. - : Elsevier BV. - 0001-8686. ; 249, s. 88-99
  • Research review (peer-reviewed)abstract
    • Biosensors for the rapid, specific, and sensitive detection of analytes play a vital role in healthcare, drug discovery, food safety, and environmental monitoring. Although a number of sensing concepts and devices have been developed, many longstanding challenges to obtain inexpensive, easy-to-use, and reliable sensor platforms remain largely unmet. Nanomaterials offer exciting possibilities for enhancing the assay sensitivity and for lowering the detection limits down to single-molecule resolution. In this review, we present an overview of liposomes and lipid bilayers in biosensing applications. Lipid assemblies in the form of spherical liposomes or two-dimensional planar membranes have been widely used in the design of biosensing assays; in particular, we highlight a number of recent promising developments of biosensors based on liposomes in suspension, liposome arrays, and lipid bilayers arrays. Assay sensitivity and specificity are discussed, advantages and drawbacks are reviewed, and possible further developments are outlined.
  •  
37.
  • Movérare-Skrtic, Sofia, et al. (author)
  • Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures.
  • 2014
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 20:11, s. 1279-88
  • Journal article (peer-reviewed)abstract
    • The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In contrast, trabecular bone volume is not altered in these mice. Mechanistic studies revealed that WNT16 is osteoblast derived and inhibits human and mouse osteoclastogenesis both directly by acting on osteoclast progenitors and indirectly by increasing expression of osteoprotegerin (Opg) in osteoblasts. The signaling pathway activated by WNT16 in osteoclast progenitors is noncanonical, whereas the pathway activated in osteoblasts is both canonical and noncanonical. Conditional Wnt16 inactivation revealed that osteoblast-lineage cells are the principal source of WNT16, and its targeted deletion in osteoblasts increases fracture susceptibility. Thus, osteoblast-derived WNT16 is a previously unreported key regulator of osteoclastogenesis and fracture susceptibility. These findings open new avenues for the specific prevention or treatment of nonvertebral fractures, a substantial unmet medical need.
  •  
38.
  • Nadeem, Aftab, et al. (author)
  • A tripartite cytolytic toxin formed by Vibrio cholerae proteins with flagellum-facilitated secretion
  • 2021
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:47
  • Journal article (peer-reviewed)abstract
    • Vibrio cholerae, responsible for outbreaks of cholera disease, is a highly motile organism by virtue of a single flagellum. We describe how the flagellum facilitates the secretion of three V. cholerae proteins encoded by a hitherto-unrecognized genomic island. The proteins MakA/B/E can form a tripartite toxin that lyses erythrocytes and is cytotoxic to cultured human cells. A structural basis for the cytolytic activity of the Mak proteins was obtained by X-ray crystallography. Flagellum-facilitated secretion ensuring spatially coordinated delivery of Mak proteins revealed a role for the V. cholerae flagellum considered of particular significance for the bacterial environmental persistence. Our findings will pave the way for the development of diagnostics and therapeutic strategies against pathogenic Vibrionaceae.
  •  
39.
  • Nadeem, Aftab, et al. (author)
  • Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA
  • 2021
  • In: PLoS Pathogens. - : Public Library of Science. - 1553-7366 .- 1553-7374. ; 17:3
  • Journal article (peer-reviewed)abstract
    • Vibrio cholerae is a noninvasive intestinal pathogen extensively studied as the causative agent of the human disease cholera. Our recent work identified MakA as a potent virulence factor of V. cholerae in both Caenorhabditis elegans and zebrafish, prompting us to investigate the potential contribution of MakA to pathogenesis also in mammalian hosts. In this study, we demonstrate that the MakA protein could induce autophagy and cytotoxicity of target cells. In addition, we observed that phosphatidic acid (PA)-mediated MakA-binding to the host cell plasma membranes promoted macropinocytosis resulting in the formation of an endomembrane-rich aggregate and vacuolation in intoxicated cells that lead to induction of autophagy and dysfunction of intracellular organelles. Moreover, we functionally characterized the molecular basis of the MakA interaction with PA and identified that the N-terminal domain of MakA is required for its binding to PA and thereby for cell toxicity. Furthermore, we observed that the ΔmakA mutant outcompeted the wild-type V. cholerae strain A1552 in the adult mouse infection model. Based on the findings revealing mechanistic insights into the dynamic process of MakA-induced autophagy and cytotoxicity we discuss the potential role played by the MakA protein during late stages of cholera infection as an anti-colonization factor.
  •  
40.
  • Nadeem, Aftab, et al. (author)
  • Protein-lipid interaction at low pH induces oligomerization of the MakA cytotoxin from Vibrio cholerae
  • 2022
  • In: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Journal article (peer-reviewed)abstract
    • The α-pore-forming toxins (α-PFTs) from pathogenic bacteria damage host cell membranes by pore formation. We demonstrate a remarkable, hitherto unknown mechanism by an α-PFT protein from Vibrio cholerae. As part of the MakA/B/E tripartite toxin, MakA is involved in membrane pore formation similar to other α-PFTs. In contrast, MakA in isolation induces tube-like structures in acidic endosomal compartments of epithelial cells in vitro. The present study unravels the dynamics of tubular growth, which occurs in a pH-, lipid-, and concentration-dependent manner. Within acidified organelle lumens or when incubated with cells in acidic media, MakA forms oligomers and remodels membranes into high-curvature tubes leading to loss of membrane integrity. A 3.7 Å cryo-electron microscopy structure of MakA filaments reveals a unique protein-lipid superstructure. MakA forms a pinecone-like spiral with a central cavity and a thin annular lipid bilayer embedded between the MakA transmembrane helices in its active α-PFT conformation. Our study provides insights into a novel tubulation mechanism of an α-PFT protein and a new mode of action by a secreted bacterial toxin.
  •  
41.
  • Nasir, Waqas, et al. (author)
  • Histo-Blood Group Antigen Presentation Is Critical for Binding of Norovirus VLP to Glycosphingolipids in Model Membranes
  • 2017
  • In: Acs Chemical Biology. - : American Chemical Society (ACS). - 1554-8929 .- 1554-8937. ; 12:5, s. 1288-1296
  • Journal article (peer-reviewed)abstract
    • Virus entry depends on biomolecular recognition at the surface of cell membranes. In the case of glycolipid receptors, these events are expected to be influenced by how the glycan epitope close to the membrane is presented to the virus. This presentation of membrane associated glycans is more restricted than that of glycans in solution, particularly because of orientational constraints imposed on the glycolipid through its lateral interactions with other membrane lipids and proteins. We have developed and employed a total internal reflection fluorescence microscopy-based binding assay and. a scheme for molecular dynamics (MD) membrane simulations to investigate the consequences of various glycan presentation effects. The system studied was histo-blood group antigen (HBGA) epitopes of membrane-bound glycosphingolipids (GSLs) derived from small intestinal epithelium of humans (type 1 chain) and dogs (type 2 chain) interacting with GII.4 norovirus-like particles. Our experimental results showed strong binding to all lipid-linked type 1 chain HBGAs but no or only weak binding to the corresponding type 2 chain HBGAs. This is in contrast to results derived from STD experiments with free HBGAs in solution where binding was observed for Lewis x. The MD data suggest that the strong binding to type 1 chain glycolipids was due to the well-exposed (1,2)-linked alpha-L-Fucp and (1,4)- linked alpha-L-Fucp residues, while the weaker binding or lack of binding to type 2 chain HBGAs was due to the very restricted accessibility of the (1,3) -linked alpha-L-Fucp residue when the glycolipid is embedded in a phospholipid membrane. Our results not only contribute to a general understanding of protein carbohydrate interactions on model membrane surfaces, particularly in the context of virus binding, but also suggest a possible role of human intestinal GSLs as potential receptors for norovirus uptake.
  •  
42.
  •  
43.
  • Nasir, Waqas, et al. (author)
  • Interaction of Virus-Like Particles with Vesicles Containing Glycolipids: Kinetics of Detachment
  • 2015
  • In: The Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 119:35, s. 11466-11472
  • Journal article (peer-reviewed)abstract
    • Many viruses interact with their host cells via glycosphingolipids (GSLs) and/or glycoproteins present on the outer cell membrane. This highly specific interaction includes virion attachment and detachment. The residence time determined by the detachment is particularly interesting, since it is directly related to internalization and infection as well as to virion egress and spreading. In an attempt to deepen the understanding of virion detachment kinetics, we have used total internal reflection fluorescence (TIRF) microscopy to probe the interaction between individual fluorescently labeled GSL-containing lipid vesicles and surface-bound virus-like particles (VLPs) of a norovirus genotype II.4 strain. The distribution of the VLP-vesicle residence time was investigated for seven naturally occurring GSLs, all of which are candidates for the not yet identified receptor(s) mediating norovirus entry into host cells. As expected for interactions involving multiple GSL binding sites at a viral capsid, the detachment kinetics displayed features typical for a broad activation-energy distribution for all GSLs. Detailed inspection of these distributions revealed significant differences among the different GSLs. The results are discussed in terms of strength of the interaction, vesicle size, as well as spatial distribution and clustering of GSLs in the vesicle membrane. (Figure Presented).
  •  
44.
  • Nasir, Waqas, et al. (author)
  • Parvovirus B19 VLP recognizes globoside in supported lipid bilayers
  • 2014
  • In: Virology. - : Elsevier BV. - 0042-6822 .- 1096-0341. ; 456, s. 364-369
  • Journal article (peer-reviewed)abstract
    • Studies have suggested that the glycosphingolipid globoside (Gb4Cer) is a receptor for human parvovirus B19. Virus-like particles bind to Gb4Cer on thin-layer chromatograms, but a direct interaction between the virus and lipid membrane-associated Gb4Cer has been debated. Here, we characterized the binding of parvovirus B19 VP1/VP2 virus-like particles to glycosphingolipids (i) on thin-layer chromatograms (TLCs) and (ii) incorporated into supported lipid bilayers (SLBs) acting as cell-membrane mimics. The binding specificities of parvovirus B19 determined in the two systems were in good agreement; the VLP recognized both Gb4Cer and the Forssman glycosphingolipid on TLCs and in SLBs compatible with the role of Gb4Cer as a receptor for this virus.
  •  
45.
  • Norling, Karin, 1988, et al. (author)
  • Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance
  • 2022
  • In: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 38:8, s. 2550-2560
  • Journal article (peer-reviewed)abstract
    • The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.
  •  
46.
  • Norling, Karin, 1988, et al. (author)
  • Gel Phase 1,2-Distearoyl-sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro
  • 2019
  • In: ACS Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 5:11, s. 1867-1878
  • Journal article (peer-reviewed)abstract
    • Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3E alpha-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1 beta. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity.
  •  
47.
  • Olofsson, Sigvard, 1948, et al. (author)
  • Structure and Role of O-Linked Glycans in Viral Envelope Proteins
  • 2023
  • In: Annual Review of Virology. - : Annual Reviews. - 2327-056X. ; 10:1, s. 283-304
  • Journal article (peer-reviewed)abstract
    • N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.
  •  
48.
  • Peerboom, Nadia, 1990, et al. (author)
  • Binding Kinetics and Lateral Mobility of HSV-1 on End-Grafted Sulfated Glycosaminoglycans
  • 2017
  • In: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 113:6, s. 1223-1234
  • Journal article (peer-reviewed)abstract
    • Many viruses, including herpes simplex (HSV), are recruited to their host cells via interaction between their envelope glycoproteins and cell-surface glycosaminoglycans (GAGs). This initial attachment is of a multivalent nature, i.e., it requires the establishment of multiple bonds between amino acids of viral glycoproteins and sulfated saccharides on the GAG chain. To gain understanding of how this binding process is modulated, we performed binding kinetics and mobility studies using end-grafted GAG chains that mimic the end attachment of these chains to proteoglycans. Total internal reflection fluorescence microscopy was used to probe binding and release, as well as the diffusion of single HSV-1 particles. To verify the hypothesis that the degree of sulfation, but also the arrangement of sulfate groups along the GAG chain, plays a key role in HSV binding, we tested two native GAGs (chondroitin sulfate and heparan sulfate) and compared our results to chemically sulfated hyaluronan. HSV-1 recognized all sulfated GAGs, but not the nonsulfated hyaluronan, indicating that binding is specific to the presence of sulfate groups. Furthermore we observed that a notable fraction of GAG-bound virions exhibit lateral mobility, although the multivalent binding to the immobilized GAG brushes ensures firm virus attachment to the interface. Diffusion was faster on the two native GAGs, one of which, chondroitin sulfate, was also characterized by the highest association rate per GAG chain. This highlights the complexity of multivalent virus-GAG interactions and suggests that the spatial arrangement of sulfates along native GAG chains may play a role in modulating the characteristics of the HSV-GAG interaction. Altogether, these results, obtained with a minimal and well-controlled model of the cell membrane, provide, to our knowledge, new insights into the dynamics of the HSV-GAG interaction.
  •  
49.
  • Peerboom, Nadia, 1990, et al. (author)
  • Cell Membrane Derived Platform To Study Virus Binding Kinetics and Diffusion with Single Particle Sensitivity
  • 2018
  • In: Acs Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 4:6, s. 944-953
  • Journal article (peer-reviewed)abstract
    • Discovery and development of new antiviral therapies essentially rely on two key factors: an in-depth understanding of the mechanisms involved in viral infection and the development of fast and versatile drug screening platforms. To meet those demands, we present a biosensing platform to probe virus-cell membrane interactions on a single particle level. Our method is based on the formation of supported lipid bilayers from cell membrane material. Using total internal reflection fluorescence microscopy, we report the contribution of viral and cellular components to the interaction kinetics of herpes simplex virus type 1 with the cell membrane. Deletion of glycoprotein C (gC), the main viral attachment glycoprotein, or deletion of heparan sulfate, an attachment factor on the cell membrane, leads to an overall decrease in association of virions to the membrane and faster dissociation from the membrane. In addition to this, we perform binding inhibition studies using the antiviral compound heparin to estimate its IC50 value. Finally, single particle tracking is used to characterize the diffusive behavior of the virus particles on the supported lipid bilayers. Altogether, our results promote this platform as a complement to existing bioanalytical assays, being at the interface between simplified artificial membrane models and live cell experiments.
  •  
50.
  • Pulkkinen, Lauri Ilmari Aurelius, et al. (author)
  • Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein
  • 2023
  • In: PLoS Pathogens. - : Public Library of Science. - 1553-7366 .- 1553-7374. ; 19:2
  • Journal article (peer-reviewed)abstract
    • Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 62
Type of publication
journal article (50)
other publication (4)
conference paper (2)
research review (2)
book chapter (2)
doctoral thesis (1)
show more...
patent (1)
show less...
Type of content
peer-reviewed (51)
other academic/artistic (11)
Author/Editor
Bally, Marta, 1981 (42)
Höök, Fredrik, 1966 (23)
Bally, Marta (19)
Larson, Göran, 1953 (10)
Block, Stephan, 1978 (9)
Trybala, Edward, 195 ... (7)
show more...
Zhdanov, Vladimir, 1 ... (7)
Pace, Hudson (6)
Bergström, Tomas, 19 ... (5)
Esbjörner Winters, E ... (5)
Peerboom, Nadia, 199 ... (5)
Pace, Hudson, 1982 (5)
Olofsson, Sigvard, 1 ... (4)
Dahlin, Andreas, 198 ... (4)
Agnarsson, Björn, 19 ... (4)
Gunnarsson, Anders, ... (4)
Kunze, Angelika, 197 ... (4)
Lycke, Nils Y, 1954 (4)
Westerlund, Fredrik, ... (4)
Vörös, J. (4)
Nasir, Waqas (4)
Parveen, Nagma, 1988 (4)
Bano, Fouzia (4)
Uhlin, Bernt Eric (3)
Persson, Karina (3)
Lötvall, Jan, 1956 (3)
Wai, Sun Nyunt (3)
Mapar, Mokhtar, 1983 (3)
Myint, Si Lhyam (3)
Nadeem, Aftab (3)
Alam, Athar (3)
Lässer, Cecilia, 198 ... (3)
Parra, F. (3)
Rydell, Gustaf E (3)
Abidine, Yara (2)
Liu, Lifeng (2)
Frank, M. (2)
Emilsson, Gustav, 19 ... (2)
Altgärde, Noomi, 198 ... (2)
Lundgren, Anders, 19 ... (2)
Zlatkov, Nikola, 198 ... (2)
Svensson, Lennart (2)
Lundmark, Richard (2)
Nilsson, Jonas, 1970 (2)
Sjöstedt, Anders (2)
Gerold, Gisa, 1979- (2)
Levin, Sune, 1991 (2)
Kesarimangalam, Srir ... (2)
Claudio, Virginia, 1 ... (2)
Binkert, A. (2)
show less...
University
Chalmers University of Technology (44)
Umeå University (33)
University of Gothenburg (24)
Linköping University (3)
Uppsala University (2)
Lund University (1)
show more...
RISE (1)
Karolinska Institutet (1)
show less...
Language
English (62)
Research subject (UKÄ/SCB)
Natural sciences (49)
Medical and Health Sciences (26)
Engineering and Technology (16)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view