SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Basiuk V) "

Search: WFRF:(Basiuk V)

  • Result 1-40 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Joffrin, E., et al. (author)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Research review (peer-reviewed)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  • Abel, I, et al. (author)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Journal article (peer-reviewed)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
3.
  • Romanelli, F, et al. (author)
  • Overview of the JET results
  • 2011
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 51:9
  • Journal article (peer-reviewed)abstract
    • Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. © 2011 IAEA, Vienna.
  •  
4.
  • Krasilnikov, A., et al. (author)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Bécoulet, A., et al. (author)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Journal article (peer-reviewed)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
26.
  • Litaudon, X., et al. (author)
  • 14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Journal article (peer-reviewed)abstract
    • In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
  •  
27.
  • Eriksson, L. G., et al. (author)
  • Modelling of ripple losses in tokamak plasmas heated by ICRF waves
  • 2001
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 43:10, s. 1291-1302
  • Journal article (peer-reviewed)abstract
    • A model for treating ripple induced fast ion losses during ion cyclotron resonance frequency heating is presented. It is suitable for codes solving an orbit averaged three-dimensional Fokker-Planck equation with a Monte Carlo method, and has been implemented in such a code. The resulting code has been used for a comparison with experimental data form Tore Supra and for assessing the ripple induced losses in different ICRF heating scenarios.
  •  
28.
  • Voitsekhovitch, I., et al. (author)
  • Integrated modelling for tokamak plasma: Physics and scenario optimisation
  • 2012
  • In: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 1314-1317
  • Conference paper (peer-reviewed)abstract
    • Simulations of JET and AUG HS with the GLF23 model show that the observed core confinement improvement can be partly explained by the beneficial s/q effect on the ITG driven transport while the effect of the ExB shear stabilisation is weaker than in H-mode plasmas. Strong stabilising effect of βe on the ITG turbulence has been found, but the transport reduction due to this effect can be limited by the onset of the KBM mode at high βe. The simulations of toroidal rotation in HS with the GLF23 model give an indication of the toroidal momentum pinch (Pr
  •  
29.
  • Basiuk, V., et al. (author)
  • Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth : effects on transport coefficients
  • 2017
  • In: Plasma Physics and Controlled Fusion. - : IOP PUBLISHING LTD. - 0741-3335 .- 1361-6587. ; 59:12
  • Journal article (peer-reviewed)abstract
    • The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.
  •  
30.
  • Dumont, R.J., et al. (author)
  • Advances in multi-megawatt, long pulse operation in Tore Supra
  • 2012
  • In: 39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics; Stockholm; Sweden; 2 July 2012 through 6 July 2012; Code 96757. - 9781622769810 ; 2, s. 1118-1121
  • Conference paper (peer-reviewed)
  •  
31.
  • Dumont, R. J., et al. (author)
  • Multi-megawatt, gigajoule plasma operation in Tore Supra
  • 2014
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 56:7
  • Journal article (peer-reviewed)abstract
    • Integrating several important technological elements required for long pulse operation in magnetic fusion devices, the Tore Supra tokamak routinely addresses the physics and technology issues related to this endeavor and, as a result, contributes essential information on critical issues for ITER. During the last experimental campaign, components of the radiofrequency system including an ITER relevant launcher (passive active multijunction (PAM)) and continuous wave/3.7 GHz klystrons, have been extensively qualified, and then used to develop steady state scenarios in which the lower hybrid (LH), ion cyclotron (IC) and electron cyclotron (EC) systems have been combined in fully stationary shots (duration similar to 150 s, injected power up to similar to 8MW, injected/extracted energy up to similar to 1 GJ). Injection of LH power in the 5.0-6.0MW range has extended the domain of accessible plasma parameters to higher densities and non-inductive currents. These discharges exhibit steady electron internal transport barriers (ITBs). We report here on various issues relevant to the steady state operation of future devices, ranging from operational aspects and limitations related to the achievement of long pulses in a fully actively cooled fusion device (e. g. overheating due to fast particle losses), to more fundamental plasma physics topics. The latter include a beneficial influence of IC resonance heating on the magnetohydrodynamic (MHD) stability in these discharges, which has been studied in detail. Another interesting observation is the appearance of oscillations of the central temperature with typical periods of the order of one to several seconds, caused by a nonlinear interplay between LH deposition, MHD activity and bootstrap current in the presence of an ITB.
  •  
32.
  • Falchetto, G. L., et al. (author)
  • The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results
  • 2014
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 54:4
  • Journal article (peer-reviewed)abstract
    • A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application.The equilibrium reconstruction and linear magnetohydrodynamic (MHD) stability simulation chain was applied, in particular, to the analysis of the edgeMHDstability of ASDEX Upgrade type-I ELMy H-mode discharges and ITER hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different launching conditions from the equatorial and upper launcher, showing good agreement of the computed absorbed power and driven current. Selected achievements and scientific workflow applications targeting key modelling topics and physics problems are also presented, showing the current status of the ITM-TF modelling suite.
  •  
33.
  •  
34.
  • Goniche, M., et al. (author)
  • Lower hybrid current drive at high density on Tore Supra
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:3
  • Journal article (peer-reviewed)abstract
    • Lower hybrid current drive (LHCD) experiments with line-averaged density varying between 1.5 x 1019 and 6 x 10(19) m(-3) are performed on the Tore Supra tokamak under quasi-steady-state conditions with respect to the fast electron dynamics. The LHCD efficiency is analysed from the fast electron bremsstrahlung (FEB) and electron cyclotron emission (ECE). The effect of plasma equilibrium and particle fuelling is documented. It is concluded that the fast decay of FEB with plasma density could be consistent with simple scaling of the current drive efficiency and FEB. Plasma edge measurements are presented looking for the effect on fast electron emission. In a specific case of particle fuelling, an anomalous decay of the hard x-ray and ECE signals suggests deleterious interaction of the wave with edge plasma.
  •  
35.
  • Imbeaux, F., et al. (author)
  • A generic data structure for integrated modelling of tokamak physics and subsystems
  • 2010
  • In: Computer Physics Communications. - : Elsevier BV. - 0010-4655. ; 181:6, s. 987-998
  • Journal article (peer-reviewed)abstract
    • The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types This ambitious goal requires new concepts of data structure and workflow organisation, which are described for the first time in this paper The backbone of the system is a physics- and workflow-oriented data structure which allows for the deployment of a fully modular and flexible workflow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues (C) 2010 Elsevier B.V All rights reserved
  •  
36.
  • Imbeaux, F., et al. (author)
  • Data structure for the European Integrated Tokamak Modelling Task Force
  • 2008
  • In: 35th European Physical Society Conference on Plasma Physics, EPS 2008 Combined with the 10th International Workshop on Fast Ignition of Fusion Targets; Hersonissos, Crete; Greece; 9 June 2008 through 13 June 2008. - 9781622763351 ; 32:2, s. 1126-1129
  • Conference paper (peer-reviewed)
  •  
37.
  •  
38.
  • Kalupin, D., et al. (author)
  • Numerical analysis of JET discharges with the European Transport Simulator
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:12, s. article nr. 123007-
  • Journal article (peer-reviewed)abstract
    • The 'European Transport Simulator' (ETS) (Coster et al 2010 IEEE Trans. Plasma Sci. 38 2085-92, Kalupin et al 2011 Proc. 38th EPS Conf. on Plasma Physics (Strasbourg, France, 2011) vol 35G (ECA) P. 4.111) is the new modular package for 1D discharge evolution developed within the EFDA Integrated Tokamak Modelling (ITM) Task Force. It consists of precompiled physics modules combined into a workflow through standardized input/output data structures. Ultimately, the ETS will allow for an entire discharge simulation from the start up until the current termination phase, including controllers and sub-systems. The paper presents the current status of the ETS towards this ultimate goal. It discusses the design of the workflow, the validation and verification of its components on the example of impurity solver and demonstrates a proof-of-principles coupling of a local gyrofluid model for turbulent transport to the ETS. It also presents the first results on the application of the ETS to JET tokamak discharges with the ITER like wall. It studies the correlations of the radiation from impurity to the choice of the sources and transport coefficients.
  •  
39.
  •  
40.
  • Nilsson, Emelie, 1985, et al. (author)
  • Comparative modelling of lower hybrid current drive with two launcher designs in the Tore Supra tokamak
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:8
  • Journal article (peer-reviewed)abstract
    • Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-40 of 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view