SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bastien Fabienne) "

Search: WFRF:(Bastien Fabienne)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abolfathi, Bela, et al. (author)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • In: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Journal article (peer-reviewed)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
2.
  • Friboulet, Luc, et al. (author)
  • Molecular Characteristics of ERCC1-Negative versus ERCC1-Positive Tumors in Resected NSCLC
  • 2011
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 17:17, s. 5562-5572
  • Journal article (peer-reviewed)abstract
    • Purpose: Excision repair cross-complementation group 1 (ERCC1) is a protein involved in repair of DNA platinum adducts and stalled DNA replication forks. We and others have previously shown the influence of ERCC1 expression upon survival rates and benefit of cisplatin-based chemotherapy in patients with resected non-small-cell lung cancer (NSCLC). However, little is known about the molecular characteristics of ERCC1-positive and ERCC1-negative tumors. Experimental Design: We took advantage of a cohort of 91 patients with resected NSCLC, for which we had matched frozen and paraffin-embedded samples to explore the comparative molecular portraits of ERCC1-positive and ERCC1-negative tumors of NSCLC. We carried out a global molecular analysis including assessment of ERCC1 expression levels by using both immunohistochemistry (IHC) and quantitative reverse transcriptase PCR (qRT-PCR), genomic instability, global gene and miRNA expression, and sequencing of selected key genes involved in lung carcinogenesis. Results: ERCC1 protein and mRNA expression were significantly correlated. However, we observed several cases with clear discrepancies. We noted that ERCC1-negative tumors had a higher rate of genomic abnormalities versus ERCC1-positive tumors. ERCC1-positive tumors seemed to share a common DNA damage response (DDR) phenotype with the overexpression of seven genes linked to DDR. The miRNA expression analysis identified miR-375 as significantly underexpressed in ERCC1-positive tumors. Conclusions: Our data show inconsistencies in ERCC1 expression between IHC and qRT-PCR readouts. Furthermore, ERCC1 status is not linked to specific mutational patterns or frequencies. Finally, ERCC1negative tumors have a high rate of genomic aberrations that could consequently influence prognosis in patients with resected NSCLC. Clin Cancer Res; 17(17); 5562-72.
  •  
3.
  • Lazar, Vladimir, et al. (author)
  • Integrated molecular portrait of non-small cell lung cancers
  • 2013
  • In: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 6:1, s. 53-
  • Journal article (peer-reviewed)abstract
    • Background: Non-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC. Methods: Comparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC. Results: At DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of similar to 800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944. Conclusions: Integrated molecular characterization of AC and SCC helped identify clinically relevant markers and potential drivers, which are recurrent and stable changes at DNA level that have functional implications at RNA level and have strong association with histological subtypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view