SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Battersby C) "

Search: WFRF:(Battersby C)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Leisawitz, David, et al. (author)
  • The origins space telescope
  • 2019
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Conference paper (peer-reviewed)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
4.
  • Leisawitz, David, et al. (author)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
5.
  • Leisawitz, David, et al. (author)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Conference paper (peer-reviewed)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
6.
  •  
7.
  • Battersby, C., et al. (author)
  • The Origins Space Telescope
  • 2018
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 2:8, s. 596-599
  • Journal article (other academic/artistic)abstract
    • The Origins Space Telescope, one of four large Mission Concept Studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins.
  •  
8.
  • Ginsburg, A., et al. (author)
  • Dense gas in the Galactic central molecular zone is warm and heated by turbulence
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 586, s. Art nr A50-
  • Journal article (peer-reviewed)abstract
    • Context. The Galactic center is the closest region where we can study star formation under extreme physical conditions like those in high-redshift galaxies. Aims. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. Methods. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H2CO) transitions. We used the 3(2,1)-2(2,0)/3(0,3)-2(0,2) line ratio to determine the gas temperature in n similar to 10(4) - 10(5) cm(-3) gas. We have produced temperature maps and cubes with 30 0 0 and 1 km s(-1) resolution and published all data in FITS form. Results. Dense gas temperatures in the Galactic center range from similar to 60 K to > 100 K in selected regions. The highest gas temperatures T-G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km s(-1) and 50 km s(-1) clouds, and in "The Brick" (G0.253 + 0.016). We infer an upper limit on the cosmic ray ionization rate zeta(CR)
  •  
9.
  • Meixner, Margaret, et al. (author)
  • Origins Space Telescope science drivers to design traceability
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Origins Space Telescope (Origins) concept is designed to investigate the creation and dispersal of elements essential to life, the formation of planetary systems, and the transport of water to habitable worlds and the atmospheres of exoplanets around nearby K-and M-dwarfs to identify potentially habitable-and even inhabited-worlds. These science priorities are aligned with NASA's three major astrophysics science goals: How does the Universe work? How did we get here? and Are we alone? We briefly describe the science case that arose from the astronomical community and the science traceability matrix for Origins. The science traceability matrix prescribes the design of Origins and demonstrates that it will address the key science questions motivated by the science case.
  •  
10.
  • Meixner, Margaret, et al. (author)
  • Overview of the Origins Space telescope: Science drivers to observatory requirements
  • 2018
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Conference paper (peer-reviewed)abstract
    • The Origins Space Telescope (OST) mission concept study is the subject of one of the four science and technology definition studies supported by NASA Headquarters to prepare for the 2020 Astronomy and Astrophysics Decadal Survey. OST will survey the most distant galaxies to discern the rise of metals and dust and to unveil the co-evolution of galaxy and blackhole formation, study the Milky Way to follow the path of water from the interstellar medium to habitable worlds in planetary systems, and measure biosignatures from exoplanets. This paper describes the science drivers and how they drove key requirements for OST Mission Concept 2, which will operate between ∼5 and ∼600 microns with a JWST sized telescope. Mission Concept 2 for the OST study optimizes the engineering for the key science cases into a powerful and more economical observatory compared to Mission Concept 1.
  •  
11.
  • Wiedner, M.C., et al. (author)
  • Heterodyn receiver for the Origins Space Telescope concept 2
  • 2018
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Conference paper (peer-reviewed)abstract
    • The Origins Space Telescope (OST) is a NASA study for a large satellite mission to be submitted to the 2020 Decadal Review. The proposed satellite has a fleet of instruments including the HEterodyne Receivers for OST (HERO). HERO is designed around the quest to follow the trail of water from the ISM to disks around protostars and planets. HERO will perform high-spectral resolution measurements with 2x9 pixel focal plane arrays at any frequency between 468GHz to 2,700GHz (617 to 111 μm). HERO builds on the successful Herschel/HIFI heritage, as well as recent technological innovations, allowing it to surpass any prior heterodyne instrument in terms of sensitivity and spectral coverage.
  •  
12.
  • Wiedner, M.C., et al. (author)
  • Heterodyne Receiver for Origins
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Heterodyne Receiver for Origins (HERO) is the first detailed study of a heterodyne focal plane array receiver for space applications. HERO gives the Origins Space Telescope the capability to observe at very high spectral resolution (R = 107) over an unprecedentedly large far-infrared (FIR) wavelengths range (111 to 617 μm) with high sensitivity, with simultaneous dual polarization and dual-frequency band operation. The design is based on prior successful heterodyne receivers, such as Heterodyne Instrument for the Far-Infrared/Herschel, but surpasses it by one to two orders of magnitude by exploiting the latest technological developments. Innovative components are used to keep the required satellite resources low and thus allowing for the first time a convincing design of a large format heterodyne array receiver for space. HERO on Origins is a unique tool to explore the FIR universe and extends the enormous potential of submillimeter astronomical spectroscopy into new areas of astronomical research.
  •  
13.
  • Barnes, Ashley T., et al. (author)
  • Young massive star cluster formation in the Galactic Centre is driven by global gravitational collapse of high-mass molecular clouds
  • 2019
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 486:1, s. 283-303
  • Journal article (peer-reviewed)abstract
    • Young massive clusters (YMCs) are the most compact, high-mass stellar systems still forming at the present day. The precursor clouds to such systems are, however, rare due to their large initial gas mass reservoirs and rapid dispersal time-scales due to stellar feedback. None the less, unlike their high-z counterparts, these precursors are resolvable down to the sites of individually forming stars, and hence represent the ideal environments in which to test the current theories of star and cluster formation. Using high angular resolution (1 arcsec / 0.05 pc) and sensitivity ALMA observations of two YMC progenitor clouds in the Galactic Centre, we have identified a suite of molecular line transitions - e.g. c-C3H2 (7 - 6) - that are believed to be optically thin, and reliably trace the gas structure in the highest density gas on star-forming core scales. We conduct a virial analysis of the identified core and proto-cluster regions, and show that half of the cores (5/10) and both proto-clusters are unstable to gravitational collapse. This is the first kinematic evidence of global gravitational collapse in YMC precursor clouds at such an early evolutionary stage. The implications are that if these clouds are to form YMCs, then they likely do so via the 'conveyor-belt' mode, whereby stars continually form within dispersed dense gas cores as the cloud undergoes global gravitational collapse. The concurrent contraction of both the cluster-scale gas and embedded (proto-)stars ultimately leads to the high (proto-)stellar density in YMCs.
  •  
14.
  • Henshaw, Jonathan D., et al. (author)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Journal article (peer-reviewed)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
15.
  •  
16.
  •  
17.
  • Aalto, Susanne, 1964, et al. (author)
  • Extragalactic Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory
  • 2023
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 219:1
  • Research review (peer-reviewed)abstract
    • The Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), a proposed Astrophysics MIDEX-class mission concept, has an innovative 14-meter diameter inflatable primary mirror that will provide the sensitivity to study far-infrared continuum and line emission from galaxies at all redshifts with high spectral resolution heterodyne receivers. OASIS will have the sensitivity to follow the water trail from galaxies to the comets that create oceans. It will bring an understanding of the role of water in galaxy evolution and its part of the oxygen budget, by measuring water emission from local to intermediate redshift galaxies, observations that have not been possible from the ground. Observation of the ground-state HD line will accurately measure gas mass in a wide variety of astrophysical objects. Thanks to its exquisite spatial resolution and sensitivity, OASIS will, during its one-year baseline mission, detect water in galaxies with unprecedented statistical significance. This paper reviews the extragalactic science achievable and planned with OASIS.
  •  
18.
  •  
19.
  • Marsh, John E., et al. (author)
  • Chatting in the Face of the Eyewitness : The Impact of Extraneous Cell-Phone Conversation on Memory for a Perpetrator
  • 2017
  • In: Canadian journal of experimental psychology. - : American Psychological Association (APA). - 1196-1961 .- 1878-7290. ; 71:3, s. 183-190
  • Journal article (peer-reviewed)abstract
    • Cell-phone conversation is ubiquitous within public spaces. The current study investigates whether ignored cell-phone conversation impairs eyewitness memory for a perpetrator. Participants viewed a video of a staged crime in the presence of 1 side of a comprehensible cell-phone conversation (meaningful halfalogue), 2 sides of a comprehensible cell-phone conversation (meaningful dialogue), 1 side of an incomprehensible cell-phone conversation (meaningless halfalogue), or quiet. Between 24 and 28 hr later, participants freely described the perpetrator's face, constructed a single composite image of the perpetrator from memory, and attempted to identify the perpetrator from a sequential lineup. Further, participants rated the likeness of the composites to the perpetrator. Face recall and lineup identification were impaired when participants witnessed the staged crime in the presence of a meaningful halfalogue compared to a meaningless halfalogue, meaningful dialogue, or quiet. Moreover, likeness ratings showed that the composites constructed after ignoring the meaningful halfalogue resembled the perpetrator less than did those constructed after experiencing quiet or ignoring a meaningless halfalogue or a meaningful dialogue. The unpredictability of the meaningful content of the halfalogue, rather than its acoustic unexpectedness, produces distraction. The results are novel in that they suggest that an everyday distraction, even when presented in a different modality to target information, can impair the long-term memory of an eyewitness.
  •  
20.
  •  
21.
  • Svoboda, B. E., et al. (author)
  • THE BOLOCAM GALACTIC PLANE SURVEY. XIV. PHYSICAL PROPERTIES of MASSIVE STARLESS and STAR-FORMING CLUMPS
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 822:2
  • Journal article (peer-reviewed)abstract
    • We sort 4683 molecular clouds between 10° < ℓ < 65° from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 70 μm sources, mid-IR color-selected YSOs, H2O and CH3OH masers, and UCH ii regions. We also present a combined NH3-derived gas kinetic temperature and H2O maser catalog for 1788 clumps from our own GBT 100 m observations and from the literature. We identify a subsample of 2223 (47.5%) starless clump candidates (SCCs), the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1 dex) progressions when sorted by star formation indicator. The median SCC is marginally subvirial (α ∼ 0.7) with >75% of clumps with known distance being gravitationally bound (α < 2). These samples show a statistically significant increase in the median clump mass of ΔM ∼ 170-370 M o from the starless candidates to clumps associated with protostars. This trend could be due to (i) mass growth of the clumps at M o Myr-1 for an average freefall 0.8 Myr timescale, (ii) a systematic factor of two increase in dust opacity from starless to protostellar phases, and/or (iii) a variation in the ratio of starless to protostellar clump lifetime that scales as ∼M -0.4. By comparing to the observed number of CH3OH maser containing clumps, we estimate the phase lifetime of massive (M > 103 M o) starless clumps to be 0.37 ± 0.08 Myr (M/103 M o)-1; the majority (M < 450 M o) have phase lifetimes longer than their average freefall time. © 2016. The American Astronomical Society. All rights reserved.
  •  
22.
  • Walker, Christopher K., et al. (author)
  • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): “Following water from galaxies, through protostellar systems, to oceans”
  • 2021
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11820
  • Conference paper (peer-reviewed)abstract
    • Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS) is a space-based, MIDEX-class mission concept that employs a 17-meter diameter inflatable aperture with cryogenic heterodyne receivers, enabling high sensitivity and high spectral resolution (resolving power >106) observations at terahertz frequencies. OASIS science is targeting submillimeter and far-infrared transitions of H2O and its isotopologues, as well as deuterated molecular hydrogen (HD) and other molecular species from 660 to 80 µm, which are inaccessible to ground-based telescopes due to the opacity of Earth’s atmosphere. OASIS will have >20x the collecting area and ~5x the angular resolution of Herschel, and it complements the shorter wavelength capabilities of the James Webb Space Telescope. With its large collecting area and suite of terahertz heterodyne receivers, OASIS will have the sensitivity to follow the water trail from galaxies to oceans, as well as directly measure gas mass in a wide variety of astrophysical objects from observations of the ground-state HD line. OASIS will operate in a Sun-Earth L1 halo orbit that enables observations of large numbers of galaxies, protoplanetary systems, and solar system objects during the course of its 1-year baseline mission. OASIS embraces an overarching science theme of “following water from galaxies, through protostellar systems, to oceans.” This theme resonates with the NASA Astrophysics Roadmap and the 2010 Astrophysics Decadal Survey, and it is also highly complementary to the proposed Origins Space Telescope’s objectives.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22
Type of publication
journal article (16)
conference paper (5)
research review (1)
Type of content
peer-reviewed (21)
other academic/artistic (1)
Author/Editor
Battersby, C. (15)
De Beck, Elvire, 198 ... (9)
Leisawitz, David (9)
Wiedner, M.C. (8)
Melnick, G. J. (8)
Cooray, A. (8)
show more...
Bergin, E. A. (8)
Meixner, Margaret (8)
Milam, S. (8)
Pontoppidan, Klaus (8)
Staguhn, Johannes (8)
Gerin, M. (8)
Helmich, F. (8)
Carey, Sean (6)
Armus, Lee (6)
Kataria, Tiffany (6)
Pope, Alexandra (6)
Stevenson, Kevin B. (6)
Bauer, James (6)
Bradford, C. Matt (6)
Narayanan, D. (6)
Padgett, Deborah (6)
Roellig, Thomas (6)
Sandstrom, Karin (6)
Vieira, Joaquin (6)
Wright, Edward (6)
Zmuidzinas, Jonas (6)
Benford, Dominic (6)
Mamajek, Eric E. (6)
Neff, Susan G. (6)
Burgarella, Denis (6)
Sakon, Itsuki (6)
Carter, R (6)
Aalto, Susanne, 1964 (5)
Scott, D. (5)
Fortney, Jonathan J. (5)
Viti, Serena (4)
Kaltenegger, L. (4)
Ennico, Kimberly (4)
Sheth, K. (4)
Howard, J. (3)
Hunt, L. K. (3)
Sharma, A (3)
Allen, L. (3)
Kruijssen, J. M. D. (3)
Olson, J (3)
Bell, R (3)
Longmore, S. (3)
Ginsburg, A. (3)
Jacoby, M (3)
show less...
University
Chalmers University of Technology (13)
Karolinska Institutet (7)
Uppsala University (2)
University of Gothenburg (1)
University of Gävle (1)
Lund University (1)
Language
English (22)
Research subject (UKÄ/SCB)
Natural sciences (11)
Engineering and Technology (7)
Medical and Health Sciences (3)
Humanities (3)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view