SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Beljonne David) "

Search: WFRF:(Beljonne David)

  • Result 1-19 of 19
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Charalambidis, Georgios, et al. (author)
  • A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif
  • 2016
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:12657
  • Journal article (peer-reviewed)abstract
    • Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.
  •  
2.
  • Danila, Ion, et al. (author)
  • Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic C(3)-Symmetrical pi-Functional Molecule
  • 2011
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:21, s. 8344-8353
  • Journal article (peer-reviewed)abstract
    • The controlled preparation of chiral structures is a contemporary challenge for supramolecular science because of the interesting properties that can arise from the resulting materials, and here we show that a synthetic nonamphiphilic C(3) compound containing pi-functional tetrathiafulvalene units can form this kind of object. We describe the synthesis, characterization, and self-assembly properties in solution and in the solid state of the enantiopure materials. Circular dichroism (CD) measurements show optical activity resulting from the presence of twisted stacks of preferential helicity and also reveal the critical importance of fiber nucleation in their formation. Molecular mechanics (MM) and molecular dynamics (MD) simulations combined with CD theoretical calculations demonstrate that the (5) enantiomer provides the (M) helix, which is more stable than the (P) helix for this enantiomer. This relationship is for the first time established in this family of C(3) symmetric compounds. In addition, we show that introduction of the "wrong" enantiomer in a stack decreases the helical reversal barrier in a nonlinear manner, which very probably accounts for the absence of a "majority rules" effect. Mesoscopic chiral fibers, which show inverted helicity, i.e. (P) for the (S) enantiomer and (M) for the (R) one, have been obtained upon reprecipitation from dioxane and analyzed by optical and electronic microscopy. The fibers obtained with the racemic mixture present, as a remarkable feature, opposite homochiral domains within the same fiber, separated by points of helical reversal. Their formation can be explained through an "oscillating" crystallization mechanism. Although C(3) symmetric disk-shaped molecules containing a central benzene core substituted in the 1,3,5 positions with 3,3'-diamido-2,2'-bipyridine based wedges have shown peculiar self-assembly properties for amphiphilic derivatives, the present result shows the benefits of reducing the nonfunctional part of the molecule, in our case with short chiral isopentyl chains. The research reported herein represents an important step toward the preparation of functional mesostructures with controlled helical architectures.
  •  
3.
  • Gillett, Alexander J., et al. (author)
  • Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors
  • 2021
  • In: Nature Communications. - : Nature Portfolio. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Engineering a low singlet-triplet energy gap (Delta E-ST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 x 10(5) cm(-1)) and a relatively large Delta E-ST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 mu s), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a similar to 24 ns timescale and have an average electron-hole separation of >= 1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low Delta E-ST in organic DF emitters.
  •  
4.
  •  
5.
  • Pop, Flavia, et al. (author)
  • Hierarchical Self-Assembly of Supramolecular Helical Fibres from Amphiphilic C3-Symmetrical Functional Tris(tetrathiafulvalenes)
  • 2014
  • In: Chemistry - A European Journal. - : Wiley-VCH Verlag. - 0947-6539 .- 1521-3765. ; 20:52, s. 17443-17453
  • Journal article (peer-reviewed)abstract
    • The preparation and self-assembly of the enantiomers of a series of C-3-symmetric compounds incorporating three tetrathiafulvalene (TTF) residues is reported. The chiral citronellyl and dihydrocitronellyl alkyl chains lead to helical one dimensional stacks in solution. Molecular mechanics and dynamics simulations combined with experimental and theoretical circular dichroism support the observed helicity in solution. These stacks self-assemble to give fibres that have morphologies that depend on the nature of the chiral alkyl group and the medium in which the compounds aggregate. An inversion of macroscopic helical morphology of the citronellyl compound is observed when compared to analogous 2-methylbutyl chains, which is presumably a result of the stereogenic centre being further away from the core of the molecule. This composition still allows both morphologies to be observed, whereas an achiral compound shows no helicity. The morphology of the fibres also depends on the flexibility at the chain ends of the amphiphilic components, as there is not such an apparently persistent helical morphology for the dihydrocitronellyl derivative as for that prepared from citronellyl chains.
  •  
6.
  • Verlaak, Stijn, et al. (author)
  • Electronic Structure and Geminate Pair Energetics at Organic-Organic Interfaces: The Case of Pentacene/C-60 Heterojunctions
  • 2009
  • In: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 19:23, s. 3809-3814
  • Journal article (peer-reviewed)abstract
    • Organic semiconductors are characterized by localized states whose energies are predominantly determined by electrostatic interactions with their immediate molecular environment. As a result, the details of the energy landscape at heterojunctions between different organic semiconductors cannot simply be deduced from those of the individual semiconductors, and they have so far remained largely unexplored. Here, microelectrostatic computations are performed to clarify the nature of the electronic structure and geminate pair energetics at the pentacene/C-60 interface, as archetype for an interface between a donor molecule and a fullerene electron acceptor. The size and orientation of the molecular quadrupole moments, determined by material choice, crystal orientation, and thermodynamic growth parameters of the semiconductors, dominate the interface energetics. Not only do quadrupoles produce direct electrostatic interactions with charge carriers, but, in addition, the discontinuity of the quadrupole field at the interface induces permanent interface dipoles. That discontinuity is particularly striking for an interface with C-60 molecules, which by virtue of their symmetry possess no quadrupole. Consequently, at a pentacene/C-60 interface, both the vacuum-level shift and geminate pair dissociation critically depend on the orientation of the pentacene pi-system relative to the adjacent C-60.
  •  
7.
  • Bacalum, Mihaela, et al. (author)
  • A Blue-Light-Emitting BODIPY Probe for Lipid Membranes
  • 2016
  • In: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 32:14, s. 3495-3505
  • Journal article (peer-reviewed)abstract
    • Here we describe a new BODIPY-based membrane probe (1) that provides an alternative to dialkylcarbocyanine dyes, such as DiI-C,8, that can be excited in the blue spectral region. Compound 1 has unbranched octadecyl chains at the 3,5 -positions and a meso-amino function. In organic solvents, the absorption and emission maxima of 1 are determined mainly by solvent acidity and dipolarity. The fluorescence quantum yield is high and reaches 0.93 in 2-propanol. The fluorescence decays are well fitted with a single -exponential in pure solvents and in small and giant unilamellar vesicles (GUV) with a lifetime of ca. 4 ns. Probe 1 partitions in the same lipid phase as DiI-C-18(5) for lipid mixtures containing sphingomyelin and for binary mixtures of dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC). The lipid phase has no effect on the fluorescence lifetime but influences the fluorescence anisotropy. The translational diffusion coefficients of 1 in GUVs and OLN-93 cells are of the same order as those reported for DiI-C-18. The directions of the absorption and transition dipole moments of 1 are calculated to be parallel. This is reflected in the high steady-state fluorescence anisotropy of 1 in high ordered lipid phases. Molecular dynamic simulations of 1 in a model of the DOPC bilayer indicate that the average angle of the transition moments with respect to membrane normal is ca. 70 degrees, which is comparable with the value reported for al DiI-C-18.
  •  
8.
  • Gillett, Alexander J., et al. (author)
  • The role of charge recombination to triplet excitons in organic solar cells
  • 2021
  • In: Nature. - : NATURE PORTFOLIO. - 0028-0836 .- 1476-4687. ; 597:7878, s. 666-
  • Journal article (peer-reviewed)abstract
    • The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%(1). However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%(2). A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps(3), owing to non-radiative recombination(4). For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend(5), this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more. A substantial pathway for energy loss in organic solar cells may be suppressed by engineering hybridization between non-fullerene acceptor triplet excitons and spin-triplet charge transfer excitons.
  •  
9.
  • Holmgaard List, Nanna, et al. (author)
  • Origin of DNA-Induced Circular Dichroism in a Minor-Groove Binder
  • 2017
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 139:42, s. 14947-14953
  • Journal article (peer-reviewed)abstract
    • Induced circular dichroism (ICD) of DNA-binding ligands is well known to be strongly influenced by the specific mode of binding, but the relative importance of the possible mechanisms has remained undetermined. With a combination of molecular dynamics simulations, CD response calculations, and experiments on an AT-sequence, we show that the ICD of minor-groove-bound 4',6-diamidino-2-phenylindole (DAPI) originates from an intricate interplay between the chiral imprint of DNA, off-resonant excitonic coupling to nucleobases, charge-transfer, and resonant excitonic coupling between DAPIs. The significant contributions from charge-transfer and the chiral imprint to the ICD demonstrate the inadequacy of a standard Frenkel exciton theory of the DAPI-DNA interactions.
  •  
10.
  • Holzer, Isabelle, et al. (author)
  • Side chain engineering in indacenodithiophene-co-benzothiadiazole and its impact on mixed ionic-electronic transport properties
  • 2024
  • In: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534.
  • Journal article (peer-reviewed)abstract
    • Organic semiconductors are increasingly being decorated with hydrophilic solubilising chains to create materials that can function as mixed ionic-electronic conductors, which are promising candidates for interfacing biological systems with organic electronics. While numerous organic semiconductors, including p- and n-type materials, small molecules and polymers, have been successfully tailored to encompass mixed conduction properties, common to all these systems is that they have been semicrystalline materials. Here, we explore how side chain engineering in the nano-crystalline indacenodithiophene-co-benzothiadiazole (IDTBT) polymer can be used to instil ionic transport properties and how this in turn influences the electronic transport properties. This allows us to ultimately assess the mixed ionic-electronic transport properties of these new IDTBT polymers using the organic electrochemical transistor as the testing platform. Using a complementary experimental and computational approach, we find that polar IDTBT derivatives can be infiltrated by water and solvated ions, they can be electrochemically doped efficiently in aqueous electrolyte with fast doping kinetics, and upon aqueous swelling there is no deterioration of the close interchain contacts that are vital for efficient charge transport in the IDTBT system. Despite these promising attributes, mixed ionic-electronic charge transport properties are surprisingly poor in all the polar IDTBT derivatives. Albeit a "negative" result, this finding clearly contradicts established side chain engineering rules for mixed ionic-electronic conductors, which motivated our continued investigation of this system. We eventually find this anomalous behaviour to be caused by increasing energetic disorder in the polymers with increasing polar side chain content. We have investigated computationally how the polar side chain motifs contribute to this detrimental energetic inhomogeneity and ultimately use the learnings to propose new molecular design criteria for side chains that can facilitate ion transport without impeding electronic transport.
  •  
11.
  • Liu, Junzhi, et al. (author)
  • Fused Dibenzo[a,m]rubicene : A New Bowl-Shaped Subunit of C-70 Containing Two Pentagons
  • 2016
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 138:27, s. 8364-8367
  • Journal article (peer-reviewed)abstract
    • Total synthetic approaches of fullerenes are the holy grail for organic chemistry. So far, the main attempts have focused on the synthesis of the buckmin-sterfullerene C-60. In contrast, access to subunits of the homologue C-70 remains challenging. Here, we demonstrate an efficient bottom-up strategy toward a novel bowl-shaped polycyclic aromatic hydrocarbons (PAH) C34 with two pentagons. This PAH represents a subunit for C-70 and of other higher fullerenes. The bowl-shaped structure was unambiguously determined by X-ray crystallography. A bowl-to-bowl inversion for a C-70 fragment in solution was investigated by dynamic NMR analysis, showing a bowl-to-bowl inversion energy (Delta G double dagger) of 16.7 kcal mol(-1), which is further corroborated by DFT calculations.
  •  
12.
  • Nishimura, Naoyuki, et al. (author)
  • Photon Upconversion from Near-Infrared to Blue Light with TIPS-Anthracene as an Efficient Triplet-Triplet Annihilator
  • 2019
  • In: ACS Materials Letters. - : AMER CHEMICAL SOC. - 2639-4979. ; 1:6, s. 660-664
  • Journal article (peer-reviewed)abstract
    • Photon upconversion (PUC) via triplet-triplet annihilation (TTA) from near-infrared (NIR) to blue photons could have important applications especially to bioimaging and drug delivery accompanied by photochemical reaction. The fundamental challenges in achieving this has been the large anti-Stokes shift combined with the need to efficiently sensitize within the biological transparency window (700-900 nm). This calls for materials combinations with minimal energy losses during sensitization and minimal energy requirements to drive efficient TTA. Here, we demonstrate efficient PUC converting from NIR energy to blue photons using the commercially available material 9,10-bis[((triisopropyl)silyl)ethynyl]anthracene (TIPS-Ac) as the annihilator. With a conventional triplet sensitizing system, TIPS-Ac performed TTA with an efficiency of 77 +/- 3% despite a relatively small driving force, compared to conventional TTA material converting from NIR to blue, for the TTA of less than 0.32 eV. Combined with Pt(II) meso-tetraphenyltetrabenzoporphine (PtTPBP), which is a heavy atom triplet sensitizer that directly generates triplets upon NIR photon excitation, the resulting system allowed for an anti-Stokes shift of 1.03 eV. Our results highlight the use of direct triplet generation via NIR excitation as a useful path to achieving large anti-Stokes shift and also show that high TTA efficiencies can be achieved even in the absence of large driving energies for the TTA process.
  •  
13.
  • Osella, Silvio, et al. (author)
  • Combined Molecular Dynamics and Density Functional Theory Study of Azobenzene-Graphene Interfaces
  • 2016
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:12, s. 6651-6658
  • Journal article (peer-reviewed)abstract
    • The electronic properties of graphene can be tuned in a dynamic way from physical adsorption of molecular photoswitches. Here, we first investigate the formation of 4-(decyloxy)azobenzene molecular monolayers on a single graphene layer through molecular dynamics (MD) simulations and assess the associated change in work function (WF) at the density functional theory (DFT) level. We show that the major contribution to the WF shift arises from electrostatic effects induced by the azobenzene electric dipole component normal to graphene and that the conformational distribution of the molecular switches in either their trans or cis forms can be convoluted into WF distributions for the hybrid systems. We next use this strategy to build a statistical ensemble for the work functions of graphene decorated with fluorinated azobenzene derivative designed to maximize the change in WF upon photoswitching. These findings pave the way to the possible use of photoswitchable graphene-based hybrid materials as optically controlled memories for light-assisted programming and high-sensitive photosensors.
  •  
14.
  • Quintano, Vanesa, et al. (author)
  • Measurement of the conformational switching of azobenzenes from the macro- to attomolar scale in self-assembled 2D and 3D nanostructures
  • 2021
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 23:20, s. 11698-11708
  • Journal article (peer-reviewed)abstract
    • It is important, but challenging, to measure the (photo)induced switching of molecules in different chemical environments, from solution through thin layers to solid bulk crystals. We compare the cis-trans conformational switching of commercial azobenzene molecules in different liquid and solid environments: polar solutions, liquid polymers, 2D nanostructures and 3D crystals. We achieve this goal by using complementary techniques: optical absorption spectroscopy, femtosecond transient absorption spectroscopy, Kelvin probe force microscopy and reflectance spectroscopy, supported by density functional theory calculations. We could observe the same molecule showing fast switching in a few picoseconds, when studied as an isolated molecule in water, or slow switching in tens of minutes, when assembled in 3D crystals. It is worth noting that we could also observe switching for small ensembles of molecules (a few attomoles), representing an intermediate case between single molecules and bulk structures. This was achieved using Kelvin probe force microscopy to monitor the change of surface potential of nanometric thin 2D islands containing ca. 10(6) molecules each, self-assembled on a substrate. This approach is not limited to azobenzenes, but can be used to observe molecular switching in isolated ensembles of molecules or other nano-objects and to study synergistic molecular processes at the nanoscale.
  •  
15.
  • Rubio-Magnieto, Jenifer, et al. (author)
  • Self-assembly and hybridization mechanisms of DNA with cationic polythiophene
  • 2015
  • In: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; 11:2, s. 6460-6471
  • Journal article (peer-reviewed)abstract
    • The combination of DNA and pi-conjugated polyelectrolytes (CPEs) represents a promising approach to develop DNA hybridization biosensors, with potential applications for instance in the detection of DNA lesions and single-nucleotide polymorphisms. Here we exploit the remarkable optical properties of a cationic poly[3-(6'-(trimethylphosphonium)hexyl)thiophene-2,5-diyl] (CPT) to decipher the self-assembly of DNA and CPT. The ssDNA/ CPT complexes have chiroptical signatures in the CPT absorption region that are strongly dependent on the DNA sequence, which we relate to differences in supramolecular interactions between the thiophene monomers and the various nucleobases. By studying DNA-DNA hybridization and melting processes on preformed ssDNA/ CPT complexes, we observe sequence-dependent mechanisms that can yield DNA-condensed aggregates. Heating-cooling cycles show that non-equilibrium mixtures can form, noticeably depending on the working sequence of the hybridization experiment. These results are of high importance for the use of pi-conjugated polyelectrolytes in DNA hybridization biosensors and in polyplexes.
  •  
16.
  • Schwartz, Erik, et al. (author)
  • "Helter-Skelter-Like" Perylene Polyisocyanopeptides
  • 2009
  • In: Chemistry: A European Journal. - : Wiley. - 1521-3765 .- 0947-6539. ; 15:11, s. 2536-2547
  • Journal article (peer-reviewed)abstract
    • We report on a combined experimental and computational investigation on the synthesis and thorough characterization of the structure of perylene-functionalized polyisocyanides. Spectroscopic analyses and extensive molecular dynamics studies revealed a well defined 4, helix in which the perylene molecules form four "helter skelter-like" overlapping pathways along which excitons and electrons can rapidly migrate. The well-defined polymer scaffold stabilized by hydrogen bonding, to which the chromophores are attached, accounts for the precise architectural definition, and molecular stiffness observed for these molecules. Molecular-dynamics studies showed that the chirality present in these polymers is expressed in the formation of stable right-handed helices. The formation of chiral supramolecular structures is further supported by the measured and calculated bisignated Cotton effect. The structural definition of the chromophores aligned in one direction along the backbone is highlighted by the extremely efficient exciton migration rates and charge densities measured with Transient Absorption Spectroscopy.
  •  
17.
  • Sforazzini, G., et al. (author)
  • Synthesis and Photophysics of Coaxial Threaded Molecular Wires: Polyrotaxanes with Triarylamine Jackets
  • 2014
  • In: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:8, s. 4553-4566
  • Journal article (peer-reviewed)abstract
    • Conjugated polyrotaxanes jacketed with hole-transport groups have been synthesized from water-soluble polyrotaxanes consisting of a polyfluorene-alt-biphenylene (PFBP) conjugated polymer threaded through beta-cyclodextrin macrocycles. The hydroxyl groups of the oligosaccharides were efficiently functionalized with triphenylamine (TPA) so that every polyrotaxane molecule carries a coat of about 200 TPA units, forming a supramolecular coaxial structure. This architecture was characterized using a range of techniques, including small-angle X-ray scattering. Absorption of light by the TPA units results in excitation energy transfer (EET) and photoinduced electron transfer (ET) to the inner conjugated polymer core. These energy- and charge-transfer processes were explored by steady-state and time-resolved fluorescence spectroscopy, femtosecond transient absorption spectroscopy, and molecular modeling. The time-resolved measurements yielded insights into the heterogeneity of the TPA coat: those TPA units which are close to the central polymer core tend to undergo ET, whereas those on the outer surface of the polyrotaxane, far from the core, undergo EET. Sections of the backbone that are excited indirectly via EET tend to be more remote from the TPA units and thus are less susceptible to electron-transfer quenching. The rate of EET from the TPA units to the PFBP core was effectively modeled by taking account of the heterogeneity in the TPA-PFBP distance, using a distributed monopole approach. This work represents a new strategy for building and studying well-defined arrays of >100 covalently linked chromophores.
  •  
18.
  • Sprafke, Johannes K., et al. (author)
  • Belt-Shaped π-Systems: Relating Geometry to Electronic Structure in a Six-Porphyrin Nanoring
  • 2011
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:43, s. 17262-17273
  • Journal article (peer-reviewed)abstract
    • Linear pi-conjugated oligomers have been widely investigated, but the behavior of the corresponding cyclic oligomers is poorly understood, despite the recent synthesis of pi-conjugated macrocycles such as [n]cycloparaphenylenes and cyclo[n]thiophenes. Here we present an efficient template-directed synthesis of a pi-conjugated butadiyne-linked cyclic porphyrin hexamer directly from the monomer. Small-angle X-ray scattering data show that this nanoring is shape-persistent in solution, even without its template, whereas the linear porphyrin hexamer is relatively flexible. The crystal structure of the nanoring-template complex shows that most of the strain is localized in the acetylenes; the porphyrin units are slightly curved, but the zinc coordination sphere is undistorted. The electrochemistry, absorption, and fluorescence spectra indicate that the HOMO-LUMO gap of the nanoring is less than that of the linear hexamer and less than that of the corresponding polymer. The nanoring exhibits six one-electron reductions and six one-electron oxidations, most of which are well resolved. Ultrafast fluorescence anisotropy measurements show that absorption of light generates an excited state that is delocalized over the whole pi-system within a time of less than 0.5 ps. The fluorescence spectrum is amazingly structured and red-shifted. A similar, but less dramatic, red-shift has been reported in the fluorescence spectra of cycloparaphenylenes and was attributed to a high exciton binding energy; however the exciton binding energy of the porphyrin nanoring is similar to those of linear oligomers. Quantum-chemical excited state calculations show that the fluorescence spectrum of the nanoring can be fully explained in terms of vibronic Herzberg-Teller (HT) intensity borrowing.
  •  
19.
  • Wang, Yanhua, 1977- (author)
  • Theoretical Design of Molecular Photonic Materials
  • 2007
  • Doctoral thesis (other academic/artistic)abstract
    • This thesis presents a theoretical study on optical properties of molecular materials. Special emphasis has been put on the influence of solvent environment, nuclear vibrations, and aggregation effects on molecular properties like linear and nonlinear polarizabilities, one- and two-photon absorption probabilities. All calculations have been performed by means of time independent and dependent quantum chemical methods at the Hartree-Fock and density functional theory levels. Solvation models that include both long range and short range interactions have been employed for calculations of optical properties of molecules in solutions. Pure vibrational and zero-point vibrationally averaged contributions have been taken into account for linear and nonlinear polarizabilities. The linear coupling model is applied to simulate vibronic profiles of optical absorption spectra. The computational strategies described in this thesis are very useful for the design of efficient molecular photonic materials. More specifically, the nonmonotonic behavior of the solvatochromic shifts and the first hyperpolarizability of para-nitroaniline (pNA) with respect to the polarity of the solvents have been theoretically confirmed for the first time. The significant contributions of the hydrogen bonding on the electronic structures of pNA are revealed. Vibrational contributions to the linear and nonlinear polarizabilities of methanol, ethanol and propanol have been calculated both at the static limit and in dynamic optical processes. The importance of vibrational contributions to certain nonlinear optical processes have been demonstrated. A series of end-capped triply branched dendritic chromophores have been studied with the result that their second order nonlinear optical properties are found strongly dependent on the mutual orientations of the three chromophores, numbers of caps and the conjugation length of the chromophores. Several possible mechanisms for the origin of the Q-band splitting of aluminum phthalocyanine chloride have been examined. Calculated vibronic one-photon absorption profiles of two molecular systems are found to be in very good agreement with the corresponding experiments, allowing to provide proper assignments for different spectral features. Furthermore, effects of vibronic coupling in the nonradiative decay processes have been considered which helps to understand the aggregation enhanced luminescence of silole molecules. The study of molecular aggregation effects on two-photon absorption cross sections of octupolar molecules has highlighted the need to use a hybrid method that combines density functional response theory and molecular dynamics simulations for the design of molecular materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-19 of 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view