SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Belka Claus) "

Search: WFRF:(Belka Claus)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Combs, Stephanie E., et al. (author)
  • ESTRO ACROP guideline for target volume delineation of skull base tumors
  • 2021
  • In: Radiotherapy and Oncology. - : Elsevier. - 0167-8140 .- 1879-0887. ; 156, s. 80-94
  • Journal article (peer-reviewed)abstract
    • Background and purpose: For skull base tumors, target definition is the key to safe high-dose treatments because surrounding normal tissues are very sensitive to radiation. In the present work we established a joint ESTRO ACROP guideline for the target volume definition of skull base tumors.Material and methods: A comprehensive literature search was conducted in PubMed using various combinations of the following medical subjects headings (MeSH) and free-text words: “radiation therapy” or “stereotactic radiosurgery” or “proton therapy” or “particle beam therapy” and “skull base neoplasms” “pituitary neoplasms”, “meningioma”, “craniopharyngioma”, “chordoma”, “chondrosarcoma”, “acoustic neuroma/vestibular schwannoma”, “organs at risk”, “gross tumor volume”, “clinical tumor volume”, “planning tumor volume”, “target volume”, “target delineation”, “dose constraints”. The ACROP committee identified sixteen European experts in close interaction with the ESTRO clinical committee who analyzed and discussed the body of evidence concerning target delineation.Results: All experts agree that magnetic resonance (MR) images with high three-dimensional spatial accuracy and tissue-contrast definition, both T2-weighted and volumetric T1-weighted sequences, are required to improve target delineation. In detail, several key issues were identified and discussed: i) radiation techniques and immobilization, ii) imaging techniques and target delineation, and iii) technical aspects of radiation treatments including planning techniques and dose-fractionation schedules. Specific target delineation issues with regard to different skull base tumors, including pituitary adenomas, meningiomas, craniopharyngiomas, acoustic neuromas, chordomas and chondrosarcomas are presented.Conclusions: This ESTRO ACROP guideline achieved detailed recommendations on target volume definition for skull base tumors, as well as comprehensive advice about imaging modalities and radiation techniques.
  •  
2.
  • Niyazi, Maximilian, et al. (author)
  • ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma
  • 2023
  • In: Radiotherapy and Oncology. - 0167-8140. ; 184
  • Journal article (peer-reviewed)abstract
    • Background and Purpose: Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. Material and Methods: The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. Results: Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. Conclusions: The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.
  •  
3.
  • Skripcak, Tomas, et al. (author)
  • Creating a data exchange strategy for radiotherapy research : Towards federated databases and anonymised public datasets
  • 2014
  • In: Radiotherapy and Oncology. - : Elsevier BV. - 0167-8140 .- 1879-0887. ; 113:3, s. 303-309
  • Journal article (peer-reviewed)abstract
    • Disconnected cancer research data management and lack of information exchange about planned and ongoing research are complicating the utilisation of internationally collected medical information for improving cancer patient care. Rapidly collecting/pooling data can accelerate 'translational research in radiation therapy and oncology. The exchange of study data is one of the fundamental principles behind data aggregation and data mining. The possibilities of reproducing the original study results, performing further analyses on existing research data to generate new hypotheses or developing computational models to support medical decisions (e.g. risk/benefit analysis of treatment options) represent just a fraction of the potential benefits of medical data-pooling. Distributed machine learning and knowledge exchange from federated databases can be considered as one beyond other attractive approaches for knowledge generation within "Big Data". Data interoperability between research institutions should be the major concern behind a wider collaboration. Information captured in electronic patient records (EPRs) and study case report forms (eCRFs), linked together with medical imaging and treatment planning data, are deemed to be fundamental elements for large multi-centre studies in the field of radiation therapy and oncology. To fully utilise the captured medical information, the study data have to be more than just an electronic version of a traditional (un-modifiable) paper CRF. Challenges that have to be addressed are data interoperability, utilisation of standards, data quality and privacy concerns, data ownership, rights to publish, data pooling architecture and storage. This paper discusses a framework for conceptual packages of ideas focused on a strategic development for international research data exchange in the field of radiation therapy and oncology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view