SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bhandari Shivani) "

Search: WFRF:(Bhandari Shivani)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhandari, Shivani, et al. (author)
  • Constraints on the Persistent Radio Source Associated with FRB 20190520B Using the European VLBI Network
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 958:2
  • Journal article (peer-reviewed)abstract
    • We present very long baseline interferometry (VLBI) observations of a continuum radio source potentially associated with the fast radio burst source FRB 20190520B. Using the European VLBI network, we find the source to be compact on VLBI scales with an angular size of <2.3 mas (3 sigma). This corresponds to a transverse physical size of <9 pc (at the z = 0.241 redshift of the host galaxy), confirming it to be as fast radio burst (FRB) persistent radio source (PRS) like that associated with the first-known repeater FRB 20121102A. The PRS has a flux density of 201 +/- 34 mu Jy at 1.7 GHz and a spectral radio luminosity of L-1.7 GHz = (3.0 +/- 0.5) x 10(29) erg s(-1) Hz(-1) (also similar to the FRB 20121102A PRS). Compared to previous lower-resolution observations, we find that no flux is resolved out on milliarcsecond scales. We have refined the PRS position, improving its precision by an order of magnitude compared to previous results. We also report the detection of the FRB 20190520B burst at 1.4 GHz and find the burst position to be consistent with the PRS position, at less than or similar to 20 mas. This strongly supports their direct physical association and the hypothesis that a single central engine powers both the bursts and the PRS. We discuss the model of a magnetar in a wind nebula and present an allowed parameter space for its age and the radius of the putative nebula powering the observed PRS emission. Alternatively, we find that an accretion-powered hypernebula model also fits our observational constraints.
  •  
2.
  • Hewitt, Dante M., et al. (author)
  • Milliarcsecond localization of the hyperactive repeating FRB 20220912A
  • 2024
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:2, s. 1814-1826
  • Journal article (peer-reviewed)abstract
    • We present very long-baseline interferometry (VLBI) observations of the hyperactive repeating FRB 20220912A using the European VLBI Network (EVN) outside of regular observing sessions (EVN-Lite). We detected 150 bursts from FRB 20220912A over two observing epochs in 2022 October. Combining the burst data allows us to localize FRB 20220912A to a precision of a few milliarcseconds, corresponding to a transverse scale of less than 10 pc at the distance of the source. This precise localization shows that FRB 20220912A lies closer to the centre of its host galaxy than previously found, although still significantly offset from the host galaxy's nucleus. On arcsecond scales, FRB 20220912A is coincident with a persistent continuum radio source known from archival observations; however, we find no compact persistent emission on milliarcsecond scales. The 5σ upper limit on the presence of such a compact persistent radio source is 120 μJy, corresponding to a luminosity limit of (D/362.4 Mpc)erg s-1 Hz-1. The persistent radio emission is thus likely to be from star formation in the host galaxy. This is in contrast to some other active FRBs, such as FRB 20121102A and FRB 20190520B.
  •  
3.
  • Laskar, Tanmoy, et al. (author)
  • The Radio to GeV Afterglow of GRB 221009A
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 946:1
  • Journal article (peer-reviewed)abstract
    • GRB 221009A ($z=0.151$) is one of the closest known long $gamma$-ray bursts (GRBs). Its extreme brightness across all electromagnetic wavelengths provides an unprecedented opportunity to study a member of this still-mysterious class of transients in exquisite detail. We present multi-wavelength observations of this extraordinary event, spanning 15 orders of magnitude in photon energy from radio to $gamma$-rays. We find that the data can be partially explained by a forward shock (FS) from a highly-collimated relativistic jet interacting with a low-density wind-like medium. The jet's beaming-corrected kinetic energy ($E_K sim 4times10<^>{50}$ erg) is typical for the GRB population, but its opening angle ($sim2<^>{circ}$) is one of the narrowest. The radio and mm data provide strong limiting constraints on the FS model, but require the presence of an additional emission component. From equipartition arguments, we find that the radio emission is likely produced by a small amount of mass ($lesssim6times10<^>{-7} M_odot$) moving relativistically ($Gammagtrsim9$) with a large kinetic energy ($gtrsim10<^>{49}$ erg). However, the temporal evolution of this component does not follow prescriptions for synchrotron radiation from a single power-law distribution of electrons (e.g. in a reverse shock or two-component jet), or a thermal electron population, perhaps suggesting that one of the standard assumptions of afterglow theory is violated. GRB 221009A will likely remain detectable with radio telescopes for years to come, providing a valuable opportunity to track the full lifecycle of a powerful relativistic jet.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view