SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bhide Ameya) "

Search: WFRF:(Bhide Ameya)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhide, Ameya, et al. (author)
  • A 11-GS/s 1.1-GHz Bandwidth Interleaved ΔΣ DAC for 60-GHz Radio in 65-nm CMOS
  • 2015
  • In: IEEE Journal of Solid-State Circuits. - : IEEE. - 0018-9200 .- 1558-173X. ; 50:10, s. 2306-2310
  • Journal article (peer-reviewed)abstract
    • This work presents an 11 GS/s 1.1 GHz bandwidth interleaved ΔΣ DAC in 65 nm CMOS for the 60 GHz radio baseband. The high sample rate is achieved by using a two-channel interleaved MASH 1–1 architecture with a 4 bit output resulting in a predominantly digital DAC with only 15 analog current cells. Two-channel interleaving allows the use of a single clock for the logic and the multiplexing which requires each channel to operate at half sampling rate of 5.5 GHz. To enable this, a look-ahead technique is proposed that decouples the two channels within the integrator feedback path thereby improving the speed as compared to conventional loop-unrolling. Measurement results show that the ΔΣ DAC achieves a 53 dB SFDR, -49 dBc IM3 and 39 dB SNDR within a 1.1 GHz bandwidth while consuming 117 mW from 1 V digital/1.2 V analog supplies. Furthermore, the proposed ΔΣ DAC can satisfy the spectral mask of the IEEE 802.11ad WiGig standard with a second order reconstruction filter.
  •  
2.
  • Bhide, Ameya, et al. (author)
  • An 8-GS/s 200-MHz Bandwidth 68-mW ΔΣ DAC in 65-nm CMOS
  • 2013
  • In: IEEE Transactions on Circuits and Systems - II - Express Briefs. - : Institute of Electrical and Electronics Engineers (IEEE). - 1549-7747 .- 1558-3791. ; 60:7, s. 387-391
  • Journal article (peer-reviewed)abstract
    • This brief presents an 8-GS/s 12-bit input ΔΣ digital-to-analog converter (DAC) with 200-MHz bandwidth in 65-nm CMOS. The high sampling rate is achieved by a two-channel interleaved MASH 1–1 digital ΔΣ modulator with 3-bit output, resulting in a highly digital DAC with only seven current cells. The two-channel interleaving allows the use of a single clock for both the logic and the final multiplexing. This requires each channel to operate at half the sampling rate, which is enabled by a high-speed pipelined MASH structure with robust static logic. Measurement results show that the DAC achieves 200-MHz bandwidth, 26-dB SNDR, and $-$57-dBc IMD3, with a power consumption of 68 mW at 1-V digital and 1.2-V analog supplies. This architecture shows potential for use in transmitter baseband for wideband wireless communication.
  •  
3.
  • Bhide, Ameya, 1980-, et al. (author)
  • Critical Path Analysis of Two-channel Interleaved Digital MASH ΔΣ Modulators
  • 2013
  • In: 2013 NORCHI, 11–12 November, 2013, Vilnius, Lithuania. - : IEEE. - 9781479916474 ; , s. 1-4
  • Conference paper (peer-reviewed)abstract
    • Implementation of wireless wideband transmitters using ΔΣ DACs requires very high speed modulators. Digital MASH ΔΣ modulators are good candidates for speed enhancement using interleaving because they require only adders and can be cascaded. This paper presents an analysis of the integrator critical path of two-channel interleaved ΔΣ modulators. The bottlenecks for a high-speed operation are identified and the performance of different logic styles is compared. Static combinational logic shows the best trade-off and potential for use in such high speed modulators. A prototype 12-bit second order MASH ΔΣ modulator designed in 65 nm CMOS technology based on this study achieves 9 GHz operation at 1 V supply.
  •  
4.
  • Bhide, Ameya, 1980- (author)
  • Design of High-Speed Time-Interleaved Delta-Sigma D/A Converters
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • Digital-to-analog (D/A) converters (or DACs) are one the fundamental building blocks of wireless transmitters. In order to support the increasing demand for highdata-ate communication, a large bandwidth is required from the DAC. With the advances in CMOS scaling, there is an increasing trend of moving a large part of the transceiver functionality to the digital domain in order to reduce the analog complexity and allow easy reconguration for multiple radio standards. ΔΣ DACs can t very well into this trend of digital architectures as they contain a large digital signal processing component and oer two advantages over the traditionally used Nyquist DACs. Firstly, the number of DAC unit current cells is reduced which relaxes their matching and output impedance requirements and secondly, the reconstruction lter order is reduced.Achieving a large bandwidth from ΔΣ DACs requires a very high operating frequency of many-GHz from the digital blocks due to the oversampling involved. This can be very challenging to achieve using conventional ΔΣ DAC architectures, even in nanometer CMOS processes. Time-interleaved ΔΣ (TIDSM) DACs have the potential of improving the bandwidth and sampling rate by relaxing the speed of the individual channels. However, they have received only some attention over the past decade and very few previous works been reported on this topic. Hence, the aim of this dissertation is to investigate architectural and circuit techniques that can further enhance the bandwidth and sampling rate of TIDSM DACs.The rst work is an 8-GS/s interleaved ΔΣ DAC prototype IC with 200-MHz bandwidth implemented in 65-nm CMOS. The high sampling rate is achieved by a two-channel interleaved MASH 1-1 digital ΔΣ modulator with 3-bit output, resulting in a highly digital DAC with only seven current cells. Two-channel interleaving allows the use of a single clock for both the logic and the nal multiplexing. This requires each channel to operate at half the sampling rate i.e. 4 GHz. This is enabled by a high-speed pipelined MASH structure with robust static logic. Measurement results from the prototype show that the DAC achieves 200-MHz bandwidth, –57-dBc IM3 and 26-dB SNDR, with a power consumption of 68-mW at 1-V digital and 1.2-V analog supplies. This architecture shows good potential for use in the transmitter baseband. While a good linearity is obtained from this DAC, the SNDR is found to be limited by the testing setup for sending high-speed digital data into the prototype.The performance of a two-channel interleaved ΔΣ DAC is found to be very sensitive to the duty-cycle of the half-rate clock. The second work analyzes this eect mathematically and presents a new closed-form expression for the SNDR loss of two-channel DACs due to the duty cycle error (DCE) for a noise transfer function (NTF) of (1 — z—1)n. It is shown that a low-order FIR lter after the modulator helps to mitigate this problem. A closed-form expression for the SNDR loss in the presence of this lter is also developed. These expressions are useful for choosing a suitable modulator and lter order for an interleaved ΔΣ DAC in the early stage of the design process. A comparison between the FIR lter and compensation techniques for DCE mitigation is also presented.The nal work is a 11 GS/s 1.1 GHz bandwidth time-interleaved DAC prototype IC in 65-nm CMOS for the 60-GHz radio baseband. The high sampling rate is again achieved by using a two-channel interleaved MASH 1-1 architecture with a 4-bit output i.e only fteen analog current cells. The single clock architecture for the logic and the multiplexing requires each channel to operate at 5.5 GHz. To enable this, a new look-ahead technique is proposed that decouples the two channels within the modulator feedback path thereby improving the speed as compared to conventional loop-unrolling. Full speed DAC testing is enabled by an on-chip 1 Kb memory whose read path also operates at 5.5 GHz. Measurement results from the prototype show that the ΔΣ DAC achieves >53 dB SFDR, < —49 dBc IM3 and 39 dB SNDR within a 1.1 GHz bandwidth while consuming 117 mW from 1 V digital/1.2 V analog supplies. The proposed ΔΣ DAC can satisfy the spectral mask of the 60-GHz radio IEEE 802.11ad WiGig standard with a second order reconstruction lter.
  •  
5.
  • Bhide, Ameya, et al. (author)
  • Effect of Clock Duty-Cycle Error on Two-Channel Interleaved Delta Sigma DACs
  • 2015
  • In: IEEE Transactions on Circuits and Systems - II - Express Briefs. - : Institute of Electrical and Electronics Engineers (IEEE). - 1549-7747 .- 1558-3791. ; 62:7, s. 646-650
  • Journal article (peer-reviewed)abstract
    • Time-interleaved delta-sigma (Delta Sigma) modulation digital-to-analog converters (TIDSM DACs) have the potential for a wideband operation. The performance of a two-channel interleaved Delta Sigma DAC is very sensitive to the duty cycle of the half-rate clock. This brief presents a closed-form expression for the signal-to-noise-plus-distortion ratio (SNDR) loss of such DACs due to a duty-cycle error for modulators with a noise transfer function of (1 - z(-1))(n). Adding a low-order finite-impulse-response filter after the modulator helps to mitigate this problem. A closed-form expression for the SNDR loss in the presence of this filter is also developed. These expressions are useful for choosing a suitable modulator and filter order for an interleaved Delta Sigma DAC in the early stage of the design process.
  •  
6.
  • Bhide, Ameya, et al. (author)
  • Timing challenges in high-speed interleaved ΔΣ DACs
  • 2014
  • In: 14th International Symposium on Integrated Circuits (ISIC), 2014. - : IEEE. ; , s. 46-49
  • Conference paper (peer-reviewed)abstract
    • Time-interleaved ΔΣ DACs have the potential for wideband and high-speed operation. Their SNR is limited by the timing skew between the output delays of the channels to the output. In a two-channel interleaved ΔΣ DAC, the channel skew arises from the duty cycle error in the half sample rate clock. The effects of timing skew error can be mitigated by hold interleaving, digital pre-filtering or compensation in the form of analog post-correction or digital pre-correction. This paper presents a comparative study of these techniques for two-channel interleaving and the trade-offs are investigated. First order FIR pre-filtering is found to be a suitable solution with a moderate DAC matching penalty of one bit. Higher order pre-filtering achieves a near immunity to timing skew at the cost of higher matching penalty. Correction techniques are found to be less effective than pre-filtering and not well suited for high-speed implementation.
  •  
7.
  •  
8.
  • Duong, Quoc-Tai, et al. (author)
  • Design and analysis of high-speed split-segmented switched-capacitor DACs
  • 2017
  • In: Analog Integrated Circuits and Signal Processing. - : Springer-Verlag New York. - 0925-1030 .- 1573-1979. ; 92:2, s. 199-217
  • Journal article (peer-reviewed)abstract
    • In order to achieve high speed and high resolution for switched-capacitor (SC) digital-to-analog converters (DACs), an architecture of split-segmented SC DAC is proposed. The detailed design considerations of kT/C noise, capacitor mismatch, settling time and simultaneous switching noise are mathematically analyzed and modelled. The design area W–Cu is defined based on that analysis. It is used not only to identify the maximum speed and resolution but also to find the design point (W, Cu) for certain speed and resolution of SC DAC topology. The segmentation effects are also considered. An implementation example of this type of DACs is a 12-bit 6-6 split-segmented SC DAC designed in 65 nm CMOS. The linear open-loop output driver utilizing derivation superposition technique for nonlinear cancellation is used to drive off-chip load for the SC array without compromising its performance. The measured results show that the SC DAC achieves a 44 dB spurious free dynamic range within a 1 GHz bandwidth of input signal at 5 GS/s while consuming 50 mW from 1 V digital and 1.2 V analog supplies. The overall performance that was achieved from measurement is poorer than expected due to lower power supply rejection ratio in fabricated chip. This DAC can be used in transmitter baseband for wideband wireless communications.
  •  
9.
  • Zhang, Dai, et al. (author)
  • A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for Medical Implant Devices
  • 2012
  • In: IEEE Journal of Solid-State Circuits. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9200 .- 1558-173X. ; 47:7, s. 1585-1593
  • Journal article (peer-reviewed)abstract
    • This paper describes an ultra-low power SAR ADC for medical implant devices. To achieve the nano-watt range power consumption, an ultra-low power design strategy has been utilized, imposing maximum simplicity on the ADC architecture, low transistor count and matched capacitive DAC with a switching scheme which results in full-range sampling without switch boot-strapping and extra reset voltage. Furthermore, a dual-supply voltage scheme allows the SAR logic to operate at 0.4 V, reducing the overall power consumption of the ADC by 15% without any loss in performance. The ADC was fabricated in 0.13-mu m CMOS. In dual-supply mode (1.0 V for analog and 0.4 V for digital), the ADC consumes 53 nW at a sampling rate of 1 kS/s and achieves the ENOB of 9.1 bits. The leakage power constitutes 25% of the 53-nW total power.
  •  
10.
  • Zhang, Dai, et al. (author)
  • A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-um CMOS for medical implant devices
  • 2011
  • In: Proceedings of the IEEE European Solid-State Circuits Conference (ESSCIRC). - Helsinki, Finland : IEEE Solid-State Circuits Society. ; , s. 467-470
  • Conference paper (peer-reviewed)abstract
    • This paper describes an ultra-low-power SAR ADC in 0.13-um CMOS technology for medical implant devices. It utilizes an ultra-low-power design strategy, imposing maximum simplicity in ADC architecture, low transistor count, low-voltage low-leakage circuit techniques, and matched capacitive DAC with a switching scheme which results in full-range sampling without switch bootstrapping and extra reset voltage. Furthermore, a dual-supply scheme allows the SAR logic to operate at 400mV. The ADC has been fabricated in 0.13-um CMOS. In 1.0-V single-supply mode, the ADC consumes 65nW at a sampling rate of 1kS/s, while in dual-supply mode (1.0V for analog and 0.4V for digital) it consumes 53nW (18% reduction) and achieves the same ENOB of 9.12. 24% of the 53-nW total power is due to leakage. To the authors' best knowledge, this is the lowest reported power consumption of a 10-bit ADC for such sampling rates.
  •  
11.
  • Zhang, Dai, et al. (author)
  • Design of CMOS sampling switch for ultra-low power ADCs in biomedical applications
  • 2010
  • In: NORCHIP 2014. - Tampere : IEEE. - 9781424489718 - 9781424489725 ; , s. 1-4
  • Conference paper (peer-reviewed)abstract
    • This paper deals with the design of CMOS sampling switch for ultra-low power analog-to-digital converters (ADC) in biomedical applications. General switch design constraints are analyzed, among which the voltage droop due to the subthreshold leakage current constitutes the major error source for low-speed sampling circuits. Based on the analyses, a CMOS sampling switch with leakage-reduction has been designed for a 10-bit 1-kS/s successive approximation (SA) ADC in a standard 130 nm CMOS process. Post-layout simulation shows that the ADC with the proposed switch offers an effective number of bits (ENOB) of 9.5 while consuming only 64 nW.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view