SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bjorkhem I) "

Search: WFRF:(Bjorkhem I)

  • Result 1-50 of 264
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Ismail, MA, et al. (author)
  • 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation
  • 2017
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 214:3, s. 699-717
  • Journal article (peer-reviewed)abstract
    • Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders.
  •  
6.
  •  
7.
  • Lutjohann, D, et al. (author)
  • Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation
  • 1996
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 93:18, s. 9799-9804
  • Journal article (peer-reviewed)abstract
    • We have investigated whether side chain-hydroxylated cholesterol species are important for elimination of cholesterol from the brain. Plasma concentrations of 24-hydroxycholesterol (24-OH-Chol) in the internal jugular vein and the brachial artery in healthy volunteers were consistent with a net flux of this steroid from the brain into the circulation, corresponding to elimination of approximately 4 mg cholesterol during a 24-h period in adults. Results of experiments with rats exposed to 18O2 were also consistent with a flux of 24-OH-Chol from the brain into the circulation. No other oxysterol measured showed a similar behavior as 24-OH-Chol. These results and the finding that the concentration of 24-OH-Chol was 30- to 1500-fold higher in the brain than in any other organ except the adrenals indicate that the major part of 24-OH-Chol present in the circulation originates from the brain. Both the 24-OH-Chol present in the brain and in the circulation were the 24S-stereoisomer. In contrast to other oxysterols, levels of plasma 24-OH-Chol were found to be markedly dependent upon age. The ratio between 24-OH-Chol and cholesterol in plasma was approximately 5 times higher during the first decade of life than during the sixth decade. There was a high correlation between levels of 24-OH-Chol in plasma and cerebrospinal fluid. It is suggested that the flux of 24-OH-Chol from the brain is important for cholesterol homeostasis in this organ.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Saeed, A., et al. (author)
  • 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in cerebrospinal fluid reflects the integrity of the blood-brain barrier
  • 2014
  • In: Journal of Lipid Research. - 0022-2275 .- 1539-7262. ; 55:2, s. 313-318
  • Journal article (peer-reviewed)abstract
    • There is a continuous flux of the oxysterol 27-hydroxycholesterol (27-OHC) from the circulation across the blood-brain barrier (BBB) into the brain. The major metabolite of 27-OHC in the brain is 7 alpha-hydroxy-3-oxo-4-cholestenoic acid (7-HOCA). We confirm a recent report describing the presence of this metabolite in cerebrospinal fluid (CSF) at a relatively high concentration. A simple and accurate method was developed for assay of 7-HOCA in CSF based on isotope dilution-mass spectrometry and use of H-2(4)-labeled internal standard. The concentration of this metabolite was found to be markedly increased in CSF from patients with a dysfunctional BBB. There was a high correlation between the levels of 7-HOCA in CSF and the CSF/serum albumin ratio. The concentration of 7-HOCA in CSF was not significantly affected by neurodegeneration. Our findings suggest that 7-HOCA could be used as a diagnostic marker for conditions with a dysfunctional BBB.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Wechsler, A, et al. (author)
  • Generation of viable cholesterol-free mice
  • 2003
  • In: Science (New York, N.Y.). - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 302:5653, s. 2087-2087
  • Journal article (peer-reviewed)
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Benthin, G, et al. (author)
  • Transformation of subcutaneous nitric oxide into nitrate in the rat
  • 1997
  • In: The Biochemical journal. - : Portland Press Ltd.. - 0264-6021 .- 1470-8728. ; 323323 ( Pt 3), s. 853-858
  • Journal article (peer-reviewed)abstract
    • Following its addition to arterialized blood in vitro, nitric oxide (NO) is transformed into nitrate in the erythrocytes. Inhaled NO is similarly transformed into nitrate in the blood in vivo. These observations suggest that nitrate is a universal end-metabolite of NO, i.e. of endogenously formed NO as well. However, endogenous NO may also be inactivated in tissues, i.e. outside the vascular lumen. To study the fate of NO metabolized with delayed access to the blood, rats were given subcutaneous injections of 15NO or K15NO3, and the plasma concentrations of 15NO3- were followed for 450 min after injection. The values for the distribution volume and plasma decay (t½) of 15NO3- did not differ between rats given 15N-labelled NO and NO3-. The area under the plasma decay curve for rats given 15NO amounted to 89% of the corresponding area for animals given K15NO3. This demonstrates that 15NO, when given extravascularly in millimolar concentrations, is mainly transformed into 15N-labelled nitrate. Other rats were kept in an atmosphere containing a mixture of 16O2 and 18O2. Nitrate residues containing either one or two 18O atoms were isolated from the blood, indicating that inhaled oxygen was incorporated during both the formation of NO and the subsequent transformation of NO into nitrate. The fraction of nitrate residues containing two 18O atoms was larger than that containing one 18O atom. We propose that nitrate is a major stable metabolite of endogenous NO that does not primarily diffuse into the vascular lumen following formation. Hence nitrate seems to be the quantitatively most important end-product of the metabolism of endogenous NO. The transformation of endogenous NO into nitrate involves the incorporation of inhaled oxygen.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 264

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view