SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Blas Julio) "

Search: WFRF:(Blas Julio)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gauld, Jethro G., et al. (author)
  • Hotspots in the grid : Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa
  • 2022
  • In: Journal of Applied Ecology. - : John Wiley & Sons. - 0021-8901 .- 1365-2664. ; 59:6, s. 1496-1512
  • Journal article (peer-reviewed)abstract
    • Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species' specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5 x 5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and applications. We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts.
  •  
2.
  • Hamed, Tareq Abu, et al. (author)
  • Multiscale in modelling and validation for solar photovoltaics
  • 2018
  • In: EPJ Photovoltaics. - : EDP Sciences. - 2105-0716. ; 9
  • Journal article (peer-reviewed)abstract
    • Photovoltaics is amongst the most important technologies for renewable energy sources, and plays a key role in the development of a society with a smaller environmental footprint. Key parameters for solar cells are their energy conversion efficiency, their operating lifetime, and the cost of the energy obtained from a photovoltaic system compared to other sources. The optimization of these aspects involves the exploitation of new materials and development of novel solar cell concepts and designs. Both theoretical modeling and characterization of such devices require a comprehensive view including all scales from the atomic to the macroscopic and industrial scale. The different length scales of the electronic and optical degrees of freedoms specifically lead to an intrinsic need for multiscale simulation, which is accentuated in many advanced photovoltaics concepts including nanostructured regions. Therefore, multiscale modeling has found particular interest in the photovoltaics community, as a tool to advance the field beyond its current limits. In this article, we review the field of multiscale techniques applied to photovoltaics, and we discuss opportunities and remaining challenges.
  •  
3.
  • Hidalgo-Rodríguez, Paula, et al. (author)
  • Body mass dynamics of migratory nightjars are explained by individual turnover and fueling
  • 2021
  • In: Behavioral Ecology. - : Oxford University Press (OUP). - 1045-2249 .- 1465-7279. ; 32:6, s. 1086-1093
  • Journal article (peer-reviewed)abstract
    • Body mass is a commonly used indicator of the energy stores of migratory animals and there is considerable evidence that it is a critical determinant of migration decisions and outcomes. Mean population mass often increases during the post-breeding period in most migratory species. Usually, this increase is interpreted as the result of fuel accumulation for migration based on the assumption that mean population mass mirrors mean individual mass. However, an empirical test of this assumption is lacking, and it is unknown whether the general increase in mean population mass is entirely the result of within-individual mass gain, or if it rather reflects a change in the nature of individuals in the population (mass-dependent turnover). We investigated changes in body mass during the post-fledging period of a migratory bird, the Red-necked Nightjar (Caprimulgus ruficollis), and combined longitudinal and cross-sectional data collected over 9 years to disentangle the relative contribution of individual-level (mass gain) and population-level (selective appearance and disappearance) processes. We found that the average body mass of fully-developed juveniles increased as the season progressed and that both individual mass gain and the selective disappearance of lighter individuals contributed to this increase. Contrary to the general expectations for migrants, the turnover of individuals contributed 3.5 times more to the seasonal increase in average body mass than individual mass gain. On a practical note, this differential contribution implied a discrepancy of over 40% between the time-average rates of mass gain (fuel deposition rates) estimated from population-level and individual-level data. Our study calls for caution in the use of population-level changes in body mass to make inferences about individual fuel deposition rates and, more generally, indicates that longitudinal and cross-sectional approaches need to be combined to uncover phenotype-time correlations in natural populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view